Answer:
![14.68\ \text{m}](https://img.qammunity.org/2022/formulas/physics/college/510g8qtmb8ypjwj3tjgvccvqpzzuyox0jj.png)
Masses of the truck and load
Step-by-step explanation:
v = Final velocity = 0
u = Initial velocity = 12 m/s
= Coefficient of friction = 0.5
a = Acceleration
g = Acceleration due to gravity =
![9.81\ \text{m/s}^2](https://img.qammunity.org/2022/formulas/physics/high-school/xkqyb478wokfggtau8j6vfk5mhzepp8xfe.png)
s = Displacement
f = Friction
F = Force applied
The force balance of the system is given by
![F=-f\\\Rightarrow ma=-\mu mg\\\Rightarrow a=-\mu g](https://img.qammunity.org/2022/formulas/physics/college/wahoeskk9ejz4h8qlxd1kpdzobaci1fyyo.png)
From the kinematic equations we have
![v^2-u^2=2as\\\Rightarrow s=(v^2-u^2)/(2(-\mu g))\\\Rightarrow s=(0-12^2)/(2(-0.5* 9.81))\\\Rightarrow s=14.68\ \text{m}](https://img.qammunity.org/2022/formulas/physics/college/1zv9qfx8x3etlo0odit4vgp5owylglr934.png)
The minimum stopping distance for which the load will not slide forward relative to the truck is
![14.68\ \text{m}](https://img.qammunity.org/2022/formulas/physics/college/510g8qtmb8ypjwj3tjgvccvqpzzuyox0jj.png)
As it can be seen that the masses of the truck and load are not used in the above used formulae. So, they are unnecessary.