163k views
1 vote
Given: tangent A = negative StartRoot 15 EndRoot What is the value of Tangent (A minus StartFraction pi over 4 EndFraction)? StartFraction StartRoot 15 EndRoot + 1 Over 1 minus StartRoot 15 EndRoot EndFraction StartFraction negative StartRoot 15 EndRoot + 1 Over 1 + StartRoot 15 EndRoot EndFraction StartFraction StartRoot 15 EndRoot + 1 Over 1 + StartRoot 15 EndRoot EndFraction StartFraction negative StartRoot 15 EndRoot minus 1 Over 1 minus StartRoot 15 EndRoot EndFraction

User Crasp
by
5.8k points

2 Answers

5 votes

Answer:

StartFraction StartRoot 15 EndRoot + 1 Over 1 minus StartRoot 15 EndRoot EndFraction

Explanation:

EndRoot EndFraction StartFraction negative StartRoot 15 EndRoot + 1 Over 1 + StartRoot 15 EndRoot EndFraction

User Sairaj Sawant
by
6.3k points
5 votes

Answer:


\tan(A - (\pi)/(4)) = (-√(15)- 1)/(1 -√(15))

Explanation:

Given


\tan A =-\sqrt{15

Required

Find
\tan(A - (\pi)/(4))

In trigonometry:


\tan(A - B) = (\tan A - \tan B)/(1 + \tan A \tan B)

This gives:


\tan(A - (\pi)/(4)) = (\tan A - \tan (\pi)/(4))/(1 + \tan A \tan (\pi)/(4))


tan (\pi)/(4) = 1

So:


\tan(A - (\pi)/(4)) = (\tan A - 1)/(1 + \tan A * 1)


\tan(A - (\pi)/(4)) = (\tan A - 1)/(1 + \tan A)

This gives:


\tan(A - (\pi)/(4)) = (-√(15)- 1)/(1 -√(15))

User Alfredo Solano
by
5.7k points