Answer:
![- \sf \displaystyle \: ( \cos(2x) )/( \sin ^(2) (2x)√( \csc(2x) ) )](https://img.qammunity.org/2022/formulas/mathematics/college/wm6whtdep5dog21na3egcl8inplb7xooo9.png)
Explanation:
we are given a derivative
![\displaystyle \: (d)/(dx) ( √( \csc(2x) ) )](https://img.qammunity.org/2022/formulas/mathematics/college/yxit35zugaj4e7dkxc3iy7wyjfj6w6gfxg.png)
and said to figure out the first derivative
to do so
recall chain rule:
![\sf\displaystyle \: (d)/(dx) (f(g(x)) = (d)/(dg) (f(g(x)) * (d)/(dx) (g)](https://img.qammunity.org/2022/formulas/mathematics/college/4394uqozz3g9orm3h3vzgrftjo0rjr13uy.png)
so we get
![\displaystyle \: g(x) = \csc(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/5ogbfhjmuy2n4qhmt5pzzg2to7sb3uf8re.png)
rewrite the derivative using the chain rule:
![\displaystyle \: (d)/(dg) ( √( g ) ) * (d)/(dx) ( \csc(2x) )](https://img.qammunity.org/2022/formulas/mathematics/college/zcfdp0d3txxx9qa14mg6poatkqscyuo2mi.png)
use square root derivative rule to simplify:
![\displaystyle \: (1)/( 2√(g) ) * (d)/(dx) ( \csc(2x) )](https://img.qammunity.org/2022/formulas/mathematics/college/s0r0w6vqhm5eg02pfrzabrrbujn93jio5n.png)
now we need to again use chain rule composite function derivative to simplify
where we'll take a new function n so we won't mess up two g's and we'll take 2x as n
use composite function derivative to simplify:
![\sf \displaystyle \: (1)/( 2√(g) ) * (d)/(dn)( \csc(n) ) * (d)/(dx) (2x)](https://img.qammunity.org/2022/formulas/mathematics/college/sskckx6btv4pzcv12e7tqupv54t3wqb3mt.png)
use derivative formula to simplify derivatives:
![\sf \displaystyle \: (1)/( 2√(g) ) * - \cot(n) \csc(n) * 2](https://img.qammunity.org/2022/formulas/mathematics/college/jktt4wbsmceq6msndifqs88gf11onyt46f.png)
substitute the value of n:
![\sf \displaystyle \: (1)/( 2√(g) ) * - 2\cot(2x) \csc(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/2dfqs36er6101jk28zewzn2x2lvopax975.png)
substitute the value of g:
![\sf \displaystyle \: (1)/( 2√( \csc(2x) ) ) * - 2\cot(2x) \csc(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/4nqzbakznj6ala36prtcfmal2lgtg1n64y.png)
now we need our trigonometric skills to simplify
rewrite cot and csc:
![\sf \displaystyle \: (1)/( 2√( \csc(2x) ) ) * - 2 ( \cos(2x) )/( \sin(2x) ) (1)/( \sin(2x) )](https://img.qammunity.org/2022/formulas/mathematics/college/v6jocmj3h3dxfdr2cl121xo1vzjhf53a0g.png)
simplify multiplication:
![\sf \displaystyle \: \frac{1}{ \cancel{ \: 2}√( \csc(2x) ) } * \cancel{- 2} ( \cos(2x) )/( \sin ^(2) (2x) )](https://img.qammunity.org/2022/formulas/mathematics/college/rclmnczt100dlgfpudhvn7ow431cqx67nc.png)
simplify multiplication:
![- \sf \displaystyle \: ( \cos(2x) )/( \sin ^(2) (2x)√( \csc(2x) ) )](https://img.qammunity.org/2022/formulas/mathematics/college/wm6whtdep5dog21na3egcl8inplb7xooo9.png)