Given:
Consider the given equation is:
![m^?\cdot n^2\cdot m^3=m^(11)\cdot n^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/aktrweblidc9bts109g4mo0lgs3nhmry0d.png)
To find:
The missing exponent.
Solution:
Let x be the missing exponent. Then the given equation can be written as
![m^x\cdot n^2\cdot m^3=m^(11)\cdot n^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ia8lzq83fvt4qtbend71ww8z8u7fzhdwev.png)
It can be rewritten as:
![(m^x\cdot m^3)\cdot n^2=m^(11)\cdot n^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/385xf1zzqbz5ku8p22m9un9sc1juttaq41.png)
![[\because a^ma^n=a^(m+n)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/g8j409ialyzvcbjthabtx1g8qgy2ku9evq.png)
On comparing the coefficient of m, we get
![x+3=11](https://img.qammunity.org/2022/formulas/mathematics/high-school/2ynxi9h4z09dr9gfg37tyoj0duofyiuejh.png)
![x=11-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/451zhkq7qpvfh65nvzniptfsqe2nz9demu.png)
![x=8](https://img.qammunity.org/2022/formulas/mathematics/college/z69van35jyyoywr52whs11c9lrjflb3rp3.png)
Therefore, the value of the missing exponent is 8. So, the complete equation is
.