Given:
The quadratic equation is
![-2x^2-y+10x-7=0](https://img.qammunity.org/2022/formulas/mathematics/college/tjw1pdi4eq7kpgyx72050zch1hkjzfm0j0.png)
To find:
The vertex of the given quadratic equation.
Solution:
If a quadratic function is
, then
![Vertex=\left((-b)/(2a),f((-b)/(2a))\right)](https://img.qammunity.org/2022/formulas/mathematics/college/tqmpy0tsgiws6l5cfq6zk0kbn9pmdgeaxk.png)
We have,
![-2x^2-y+10x-7=0](https://img.qammunity.org/2022/formulas/mathematics/college/tjw1pdi4eq7kpgyx72050zch1hkjzfm0j0.png)
It can be written as
![-2x^2+10x-7=y](https://img.qammunity.org/2022/formulas/mathematics/college/gpfhpdld110dipoty331abl5el7auox0ks.png)
...(i)
Here,
.
![(-b)/(2a)=(-10)/(2(-2))](https://img.qammunity.org/2022/formulas/mathematics/college/yptavcvujrkpi33o7usc1n9px1zjif0d71.png)
![(-b)/(2a)=(-10)/(-4)](https://img.qammunity.org/2022/formulas/mathematics/college/xlb5bw4u6jpydbjgq9fwl3fquqnh2pqo33.png)
![(-b)/(2a)=(5)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/el739bq6wympede9yismdpgihlwaxrlz2w.png)
Putting
in (i), we get
On further simplification, we get
So, the vertex of the given quadratic equation is
.
Therefore, the correct option is A.