187k views
5 votes
Give the properties for the equation -2x 2 - y + 10x - 7 = 0.

>Vertex

(5/2, 11/2)
(-5/2, 11/2)
(5, -7)

1 Answer

3 votes

Given:

The quadratic equation is


-2x^2-y+10x-7=0

To find:

The vertex of the given quadratic equation.

Solution:

If a quadratic function is
f(x)=ax^2+bx+c, then


Vertex=\left((-b)/(2a),f((-b)/(2a))\right)

We have,


-2x^2-y+10x-7=0

It can be written as


-2x^2+10x-7=y


y=-2x^2+10x-7 ...(i)

Here,
a=-2,b=10,c=-7.


(-b)/(2a)=(-10)/(2(-2))


(-b)/(2a)=(-10)/(-4)


(-b)/(2a)=(5)/(2)

Putting
x=(5)/(2) in (i), we get


y=-2((5)/(2))^2+10((5)/(2))-7


y=-2((25)/(4))+(50)/(2)-7


y=(-50)/(4)+25-7


y=(-25)/(2)+18

On further simplification, we get


y=(-25+36)/(2)


y=(11)/(2)

So, the vertex of the given quadratic equation is
\left((5)/(2),(11)/(2)\right).

Therefore, the correct option is A.

User Masoom Badi
by
5.6k points