Answer:
ABC shaded area = 36
- 72 cm²
ABC shaded area perimeter =
cm
ABCD area =
cm²
ABCD perimeter =
cm
Explanation:
Shape ABC
Assuming you want the area and perimeter of the shaded part of the shape only...
Area
Area of a sector =
(where r is the radius and
⇒ area of a sector =
![\frac12 * 12^2* (\pi)/(2) =36\pi \ \textsf{cm}^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/mmx2c0vhtibr5d0v2ik0y4ozwrbcawjr1z.png)
Area of triangle = 1/2 x base x height
⇒ area of triangle = 1/2 x 12 x 12 = 72 cm²
Therefore, area of shaded area = area of sector - area of triangle
⇒ area = 36
- 72 cm²
Perimeter
Arc length =
(where r is the radius and
⇒ arc length =
![12*\frac12\pi =6\pi \ \textsf{cm}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iiil1c6nh5rumnqs1te9wmui62uzft2ujm.png)
Hypotenuse of triangle =
(where a and b are the legs of the right triangle)
⇒ hypotenuse =
cm
Therefore, perimeter = arc length + hypotenuse
⇒ perimeter =
cm
Shape ABCD
Area
Area of a semicircle =
(where r is the radius)
⇒ area of large semicircle ABC =
![\frac12 * \pi * 2^2=2\pi \ \textsf{cm}^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/k0nh1wj6hxhhixg962b3xff7qcexmc4wt8.png)
⇒ area of small semicircle AD =
![\frac12 * \pi * 1^2=\frac12\pi \ \textsf{cm}^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/9dgfktllojv4hxjk63sd20sv6trf9px7r4.png)
⇒ area of shape ABCD =
![\frac12 \pi + 2 \pi=\frac52 \pi \ \textsf{cm}^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/15y4e8w7v5gjlj46m6g6ak3vbot5trakqq.png)
Perimeter
1/2 circumference =
![\pi r](https://img.qammunity.org/2023/formulas/mathematics/college/mjdkc92mb2iju1whtfr09llxzig8a7nnjs.png)
⇒ perimeter =
![2\pi +2+\pi=3 \pi+2 \ \textsf{cm}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vmxs8gh8lxhplade8mfucmsnop9o4725ot.png)