19.3k views
23 votes
Verify the following identity. Show all work for credit.

sin cot sec = 1

User Jay Miller
by
6.3k points

2 Answers

6 votes

Answer:

Prove
sin(x)cot(x)sec(x)=1

Using the following trig identities:


cot(x)=(1)/(tan(x))


sec(x)=(1)/(cos(x))


(sin(x))/(cos(x))=tan(x)


\implies sin(x)cot(x)sec(x)=sin(x) \cdot (1)/(tan(x)) \cdot(1)/(cos(x))


= (1)/(tan(x)) \cdot(sin(x))/(cos(x))


= (1)/(tan(x)) \cdot tan(x)


= (tan(x))/(tan(x))


=1

Hence
sin(x)cot(x)sec(x)=1

User Chriga
by
6.0k points
11 votes

Formula's:


  • \rm cot = (cos)/(sin)

  • \rm sec = (1)/(cos)

solve:


\rightarrow \rm sin \ cot \ sec = 1


\rightarrow \rm sin \ (cos)/(sin) \ (1)/(cos) = 1


\rightarrow \rm (sin \ cos)/(sin \ cos) = 1


1 = 1

L.H.S = R.H.S

Hence both sides are equal and confirmed true. identify proved.

User Itzel
by
6.9k points