Answer:
Explanation:
1). In ΔABC,
For angle A as a reference angle,
Opposite side of ∠A → BC
Adjacent side of ∠A → AC
Hypotenuse → AB
2). By using tangent ratio in ΔYWZ,
tan(72°) =
![\frac{\text{Opposite side}}{\text{Adjacent side}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vukhjusqid9fxo3jewnsqt435z0du43agl.png)
tan(72°) =
![(12)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1ex20erp0oo7ey0bxejde4la3qlopiupe4.png)
x =
![\frac{12}{\text{tan}(72)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/lxo2or984mhtaevcuyeth454yewkd7hp07.png)
x = 3.899
x ≈ 3.9
3). By using sine rule in ΔKNM,
tan(x°) =
![\frac{\text{Opposite side}}{\text{Hypotenuse}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/5jpr2e7ih2gntvhqc2dugg55cybkbun8pq.png)
tan(x) =
![(20)/(58)](https://img.qammunity.org/2022/formulas/mathematics/high-school/24vsxr0qlpmti0u0ls5blztyfgn21h6r0k.png)
x =
![\text{tan}^(-1)((20)/(58) )](https://img.qammunity.org/2022/formulas/mathematics/high-school/r710neh8oezafx9lwlwgg6erf4q9h9oj2k.png)
x = 19.03
x ≈ 19.0°
4). By applying cosine ratio in ΔJKF,
tan(70°) =
![\frac{\text{Opposite side}}{\text{Adjacent side}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vukhjusqid9fxo3jewnsqt435z0du43agl.png)
tan(70) =
![(60)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ykd2foe653fyjx8p19ziwv232ykebtpo61.png)
x =
![\frac{60}{\text{tan}(70)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vrr5zsvjwotqlvqzklk2fy1lv8lhhymo4v.png)
x = 21.838
x ≈ 21.8