Answer:
i. Mean = 11.2
ii. Variance = 14.17
iii. Standard deviation = 3.76
Explanation:
i. Mean, m =
![(sum of the values)/(number of the values)](https://img.qammunity.org/2022/formulas/mathematics/high-school/v263549t3d8pi3z0bctvz94eztip3ccnge.png)
=
![(4+11+12+12+13+15)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q24s3etivnqpcaodmar2lsd8mw4vfhfinz.png)
=
![(67)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/emmk3n6vtd5tvj82d1q4sqk54fjdgiktoa.png)
= 11.2
The mean of the given data is 11.2
ii. Variance =
![(sum(x_(i) - m)^(2))/(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dxqvfpkp4coed8tzqp2lo1xi0w5aw6obec.png)
where:
is the value of the one observation, m is the sample mean and n is the number of data given.
=
![([(4-11.2)^(2)+(11-11.2)^(2) + (12-11.2)^(2) + (12-11.2)^(2) + (13-11.2)^(2) + (15-11.2)^(2)] )/(6-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nkyv0i7oy6arjgnvjc3qjbgl6lpl8carc8.png)
=
![([51.84+0.04+0.64+0.64+3.24+14.44])/(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q3loexcltv91veuz4dmef10ptw9yi9cxad.png)
=
![(70.84)/(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nuk64a8u06sqsl8bvu4xsmo05ye11v4mpl.png)
= 14.168
Variance = 14.17
iii. Standard deviation =
![√(Variance)](https://img.qammunity.org/2022/formulas/mathematics/high-school/9scnjge6t7vue51mzdt3nyus2qgp0ldphz.png)
=
![√(14.17)](https://img.qammunity.org/2022/formulas/mathematics/high-school/l5ywe5869tc97wz2lq9kemb7ckfyuaghf8.png)
= 3.76