Answer:
A) F_g = 26284.48 N
B) v = 7404.18 m/s
C) E = 19.19 × 10^(10) J
Step-by-step explanation:
We are given;
Mass of satellite; m = 3500 kg
Mass of the earth; M = 6 x 10²⁴ Kg
Earth circular orbit radius; R = 7.3 x 10⁶ m
A) Formula for the gravitational force is;
F_g = GmM/r²
Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Plugging in the relevant values, we have;
F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²
F_g = 26284.48 N
B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.
Thus;
GmM/r² = mv²/r
Making v th subject, we have;
v = √(GM/r)
Plugging in the relevant values;
v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))
v = 7404.18 m/s
C) From the energy principle, the minimum amount of work is given by;
E = (GmM/r) - ½mv²
Plugging in the relevant values;
E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)
E = 19.19 × 10^(10) J