Answer:
![\displaystyle \: (5)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/z2tqpruy59lxapk95hd1bq4l4mlqt1132x.png)
Explanation:
we are given a expression
we are said to solve it using L'Hôpital's Rule
recall, L'Hôpital's Rule:
![\displaystyle \lim _(x \to \: c)( (f(x))/(g(x)) ) = \lim _(x \to \: c) \frac{f ^(')(x) }{ {g}^(')(x) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/onekn6a74ghfmzw5iagzm8bd6w9q8oxg5a.png)
it is to say the ' means derivative
our given expression:
![\displaystyle\lim_( x\to 2)(x^2+x-6)/(x^2-4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/e0nzt0nozktyfrsuosbjg5mgl484qy79zx.png)
let's apply L'Hôpital's Rule
![\displaystyle\lim_( x\to 2)( (d)/(dx) (x^2+x-6))/( (d)/(dx) (x^2-4))](https://img.qammunity.org/2022/formulas/mathematics/high-school/kw15rxqo8x5ov2fi0915tbvl85t4p0coh7.png)
some formulas of derivative
![\displaystyle \: (d)/(dx) {x}^(n) = {nx}^(n - 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/z9398sm9sg7j9j2u9jp5jfa1sw3brsw6pu.png)
![\displaystyle \: (d)/(dx) {x}^{} = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/cabnvjd2o6mfkx4ad7iadglpdnjho4q4gi.png)
![\displaystyle \: (d)/(dx) {c}^{} = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/kik37nzw6q7xe61hbhdmc70kz937hvi1x6.png)
![\sf \displaystyle \: (d)/(dx) {f}^{} (x) + {g}^{}(x) = {f}^(') (x) + {g}^(')(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bfrwd3d6lapp1txvz4hb6pefrl7znoy2ip.png)
use sum derivative formula to simplify:
![\displaystyle\lim_( x\to 2)( (d)/(dx) (x^2)+ (d)/(dx) (x) + (d)/(dx)( -6))/( (d)/(dx) (x^2) + (d)/(dx) (-4))](https://img.qammunity.org/2022/formulas/mathematics/high-school/wnr2vevfbfwkvwvzpfzv5lsfqz9yl6ihq7.png)
simplify using exponents using exponent derivative formula:
![\displaystyle\lim_( x\to 2)( 2x+ (d)/(dx) (x) + (d)/(dx)( -6))/( 2x + (d)/(dx) (-4))](https://img.qammunity.org/2022/formulas/mathematics/high-school/pi8bjmaibv6nlsy6d1ielqvcp6g3jpi1ea.png)
use variable derivative formula to simplify variable:
![\displaystyle\lim_( x\to 2)( 2x+ 1+ (d)/(dx)( -6))/( 2x + (d)/(dx) (-4))](https://img.qammunity.org/2022/formulas/mathematics/high-school/yth9h33kdnifgimcwi1l29p6kwptv4oguv.png)
use constant derivative formula to simplify derivative:
![\displaystyle\lim_( x\to 2)( 2x+ 1+ 0)/( 2x + 0)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xhh138k6yeorlapo0xitzmie1qol28gjnj.png)
simplify addition:
![\displaystyle\lim_( x\to 2)( 2x+ 1)/( 2x )](https://img.qammunity.org/2022/formulas/mathematics/high-school/o4d1aw5jekvf0rxoaxfwcvdt34j3exkl9u.png)
since we are approaching x to 2
we can substitute 2 for x
![\displaystyle\lim_( x\to 2)( 2.2+ 1)/( 2.2 )](https://img.qammunity.org/2022/formulas/mathematics/high-school/8xn957mvlk2o2q5c31o8jvgg1neb9r1ozl.png)
simplify multiplication:
![\displaystyle( 4+ 1)/( 4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/a3x4mznpggzwjl4qnu85iwsu4xf3pu5dax.png)
simplify addition:
![\displaystyle \: (5)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/z2tqpruy59lxapk95hd1bq4l4mlqt1132x.png)
hence,
![\displaystyle\lim_( x\to 2)( (d)/(dx) (x^2+x-6))/( (d)/(dx) (x^2-4)) = (5)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gf65wyuq81ngis9mke5ghgr5c507hjb77y.png)