197k views
5 votes
If tan(A + B) = √3 and tan(A - B) = 1/√3; 0° < A + B ≤ 90° ; A > B, find A and B.

Pls answer it correctly..​

User Henrijs
by
3.4k points

2 Answers

2 votes

Answer:


\displaystyle A = {45}^( \circ) \\ B = {15}^( \circ)

Explanation:

we are given two equation and condition


\displaystyle \begin{cases}\tan(A+B)=√(3) \\ \tan(A - B) = (1)/( √(3) ) \end{cases}( {0}^( \circ) < A+B < {90}^( \circ) ) \: \text{and} \: A > B

let's work with first equation

recall unit circle so A and B should be in Q:I


\displaystyle \: A+B = \arctan( √(3) )


\displaystyle \: A+B = {60}^( \circ) \cdots \: \text{I}

let's work with second equation:


\displaystyle \: \tan(A - B) = (1)/( √(3) )


\displaystyle \: A - B = \arctan((1)/( √(3) ) )


\displaystyle \: A - B = {30}^( \circ) \cdots \: \text{II}

now let's use elimination method to figure out A and B

to do so combine equation I and II


\displaystyle \underline{\begin{array}{c c c}A+B = {60}^( \circ) \\ A - B = {30}^( \circ) \end{array}} \\ 2A = {90}^( \circ)

divide both sides by 2:


\displaystyle \: (2 A)/(2) = \frac{ {90}^( \circ) }{2} \\ A = {45}^( \circ)

substitute the value of A to the second equation:


\displaystyle \: {45}^( \circ) - B = {30}^( \circ)

cancel 60° from both sides:


\displaystyle \: - B = { - 15}^( \circ)

divide both sides by -1


\displaystyle \: B = {15 }^( \circ)

hence,


\displaystyle \: A = {45}^( \circ) \\ B = {15}^( \circ)

User Jonathan Herrera
by
3.3k points
1 vote

Sol➜

We have, tan(A + B) = √3

⇒ tan(A + B) = tan60°

∴ A + B = 60° -----[i]

Again, tan(A - B) = 1/√3

⇒ tan(A - B) = tan30°

∴ A - B = 30° -----[ii]

Now, Adding [i] and [ii], we get

A + B + A - B = 60° + 30°

2A = 90° ⇒ A = 45°

Putting the value of A in [i], we have

45° + B = 60°

∴ B = 60° - 45° = 15°

Hence, A = 45° and B = 15°.

User Alok Kulkarni
by
2.7k points