Hi there!
We can use the conservation of momentum to solve.
![m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'](https://img.qammunity.org/2023/formulas/physics/high-school/85hzh55lompl2paipxnsvmaanu9xyeto2r.png)
m1 = mass of rocket (40,000 kg)
m2 = mass of gas (300 kg)
v1, v2 = INITIAL velocities of rocket and gas (0 m/s)
v1' = FINAL velocity of rocket (+220 m/s, assuming UP to be positive)
v2' = FINAL velocity of gas (- ? m/s, DOWNWARD so negative)
This is an example of a "recoil" collision, so:
![0 = m_1v_1' + m_2(v_2')](https://img.qammunity.org/2023/formulas/physics/high-school/3i08u72u1loiboia9go1nrk2skb2ewpk25.png)
Set the two equal:
![m_2(-v_2') = m_1v_1'](https://img.qammunity.org/2023/formulas/physics/high-school/zy5fgc7hkb4gs5t80s98s7ncy4zv65825e.png)
Plug in the givens:
![300(-v_2') = (40,000)(220)\\\\](https://img.qammunity.org/2023/formulas/physics/high-school/dc3rkacw2sql8cbxc2i9z4e3lohlz1zz07.png)
![\v_2 = \boxed{-29,333.33 m/s}](https://img.qammunity.org/2023/formulas/physics/high-school/nwo5z2birgvnaujyldzqlh3cvw0frmrjnr.png)
![v_2 = \boxed{-29,333.33 m/s}](https://img.qammunity.org/2023/formulas/physics/high-school/w7uhv8e9nkngnxkxx9urymolg9jp3e5lur.png)