Answer:
20
Explanation:
firstly let's find out the side lengths of the triangle using formula
![length \: = \: √((y₂-y1) + ( y₂-y1))](https://img.qammunity.org/2023/formulas/mathematics/college/owbqgp7olytg2w2i0xcen8m45ozw0bqr17.png)
length of AB
![\sqrt{( - 6 - 2) {}^(2) + ( - 4 - 1) {}^(2) } = √(89)](https://img.qammunity.org/2023/formulas/mathematics/college/h32led6fbp47aq8sxu0zuqhl3z3eqi16ah.png)
length of AC
![\sqrt{( - 6 - 2) {}^(2) + (1 - 1) {}^(2) } = 8](https://img.qammunity.org/2023/formulas/mathematics/college/n299us8etvsrcn8e7qc7mdue720yvdpygz.png)
length of BC
![\sqrt{( - 6 - ( - 6)) {}^(2) + (1 - ( - 4)) {}^(2) } = 5](https://img.qammunity.org/2023/formulas/mathematics/college/p8y0rj1qnfwpkmldafmkoj6renf7v78wqp.png)
Now we have all three side lengths:
a =√89 b = 8 and c = 5
using this formula to find the semi perimeter where a, b and c are the side lengths, input them in
![s \: = \: (a + b + c)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/yauhfmgfxzfu0iuux3g3j7o1es6i6w4nqr.png)
![s = ( √(89) + 8 + 5 )/(2) = \frac{13 + √(89) } {2}](https://img.qammunity.org/2023/formulas/mathematics/college/zpxf8f9bhyf8za77tsv1zh77x11nhdasev.png)
Use heron's formula
![area = √(s(s - a)(s - b)(s - c))](https://img.qammunity.org/2023/formulas/mathematics/college/a684cefpu8k5dfyrq3nfz9sh3dinxvtvcv.png)
![area = \sqrt{ (13 + √(89) )/(2)((13 + √(89) )/(2) - √(89))( (13 + √(89) )/(2) - 8)((13 + √(89) )/(2) - 5 } = 20](https://img.qammunity.org/2023/formulas/mathematics/college/82lq7gtse3nps9r6c5rlhf6xmq0upt1qeq.png)
area = 20