Answer:
Question 11:
![\angle DAC = 53^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/kjitih9gslnpi6yz2eploksl19ymqwh8i4.png)
![\angle AED = 90^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/z886mi6nhge0g4o25sm3i7zep262ceid6m.png)
![\angle ADC = 74](https://img.qammunity.org/2022/formulas/mathematics/high-school/wxi1c9k0d2bjt2jt8hxgldbln70fj45w1n.png)
![DB = 16](https://img.qammunity.org/2022/formulas/mathematics/high-school/8syqhu9oq7duumpryr32svkbqkz1vm1tp9.png)
![AE = 6.03](https://img.qammunity.org/2022/formulas/mathematics/high-school/c349jjw1nxj1ei21hsbu2p82kr60klddtl.png)
![AC = 12.06](https://img.qammunity.org/2022/formulas/mathematics/high-school/fre835dn2ns13stfcsrq89hze5hy7pj4w6.png)
Question 12:
,
,
and
![\triangle DAB](https://img.qammunity.org/2022/formulas/mathematics/college/bp2gmxgjd2wwjuyptldgzvsy4eo7owjzz8.png)
Question 13:
AC and BD are perpendicular lines, and they are diagonals
Explanation:
Question 11
Given
![\angle BAC = 53^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/c3awkivzmt8k6j1izau1ys9aqgowf8az43.png)
![DE = 8](https://img.qammunity.org/2022/formulas/mathematics/high-school/i1752lk3jtw1811jww29vb8rw0ppb4womh.png)
See attachment for Rhombus
Required
Determine the indicated sides
Solving (a):
![\angle DAC](https://img.qammunity.org/2022/formulas/mathematics/high-school/k3i8nmaeyy8x2f45lxm6eqm05cg7dvogws.png)
Diagonal CA divides
into 2 equal angles
i.e
![\angle DAC = \angle BAC](https://img.qammunity.org/2022/formulas/mathematics/high-school/wrloszh2ovhx0iye2qyfutlit16dd2t8jl.png)
So:
![\angle DAC = 53^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/kjitih9gslnpi6yz2eploksl19ymqwh8i4.png)
Solving (b):
![\angle AED](https://img.qammunity.org/2022/formulas/mathematics/high-school/spu0k55xfwgd39gaj0czxiga1smsiccs1l.png)
The angles at E is 90 degrees because diagonals AC and BD meet at a perpendicular.
So:
![\angle AED = 90^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/z886mi6nhge0g4o25sm3i7zep262ceid6m.png)
Solving (c):
![\angle ADC](https://img.qammunity.org/2022/formulas/mathematics/high-school/qrwdidjbswsi095zglq63x4q31vc1y5l5p.png)
First, we calculate
, considering
:
![\angle ADE + \angle AED + \angle DAC = 180](https://img.qammunity.org/2022/formulas/mathematics/high-school/8y4fx48f370qyzbq88cflhnd8a5tev7v70.png)
![\angle ADE + 90 + 53 = 180](https://img.qammunity.org/2022/formulas/mathematics/high-school/jonktncahynvxj6vyxjt1iu0zdvfyln6zl.png)
![\angle ADE + 143 = 180](https://img.qammunity.org/2022/formulas/mathematics/high-school/6f7cjln12zwfjdlwn1cqmlapxp8f4mt8bb.png)
![\angle ADE = -143 + 180](https://img.qammunity.org/2022/formulas/mathematics/high-school/ytn0yjyaj1vf31osjcgvbt8g8spiobbgsw.png)
![\angle ADE = 37](https://img.qammunity.org/2022/formulas/mathematics/high-school/1r8f0ulujh0nwfd4kzxy0kmxgh9ezo5s0x.png)
To calculate
, we have:
![\angle ADC = 2*\angle ADE](https://img.qammunity.org/2022/formulas/mathematics/high-school/ejwivv5jm0lepwlaamiozj7y1kmcx48d26.png)
![\angle ADC = 2* 37](https://img.qammunity.org/2022/formulas/mathematics/high-school/ka2ba30wzri7kzhpaoi4nxir7qve2sj6j8.png)
![\angle ADC = 74](https://img.qammunity.org/2022/formulas/mathematics/high-school/wxi1c9k0d2bjt2jt8hxgldbln70fj45w1n.png)
Solving (d):
![DB](https://img.qammunity.org/2022/formulas/mathematics/high-school/f0uozqve3rmusl964nta619z3ew4kyi4rf.png)
From the rhombus
![DB = DE +EB](https://img.qammunity.org/2022/formulas/mathematics/high-school/oyvrrdkxh7mr535unadri71m97dq33hsqy.png)
Where
![DE =EB](https://img.qammunity.org/2022/formulas/mathematics/high-school/sfbsmprcj2qnhz7yolqg2293fxceknx7ax.png)
So:
![DB = 8 + 8](https://img.qammunity.org/2022/formulas/mathematics/high-school/ahydqp8ybnsfmon0g3by0smsxazljv6q78.png)
![DB = 16](https://img.qammunity.org/2022/formulas/mathematics/high-school/8syqhu9oq7duumpryr32svkbqkz1vm1tp9.png)
Solving (e):
![AE](https://img.qammunity.org/2022/formulas/mathematics/high-school/z0n73tgsy04t21qfjbhj5qos0xozdc67jn.png)
To do this we consider
![\triangle ADE](https://img.qammunity.org/2022/formulas/mathematics/high-school/o481cftvjtufis7e20ui8ejwbg1f6510xu.png)
Using the tan formula
![tan(\angle ADE) = (AE)/(DE)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ayp1dgx8ko8jlbxgsv8p82f1y0p96f9zyj.png)
and
![DE = 8](https://img.qammunity.org/2022/formulas/mathematics/high-school/i1752lk3jtw1811jww29vb8rw0ppb4womh.png)
So:
![\tan(37) = (AE)/(8)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6aanlyfpe1jyglkkjheaguwniy7wuno397.png)
![AE = 8 * \tan(37)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3xudw0pmq6rl9zee9i3kt7wi426xx1y12d.png)
![AE = 6.03](https://img.qammunity.org/2022/formulas/mathematics/high-school/c349jjw1nxj1ei21hsbu2p82kr60klddtl.png)
Solving (f):
![AC](https://img.qammunity.org/2022/formulas/mathematics/high-school/lngshfmw474jzz3qd24jq30kw0bqnt58do.png)
This is calculated as:
![AC = AE + EC](https://img.qammunity.org/2022/formulas/mathematics/high-school/qvq5v1psk406r08bzicg45mo75m3egh2qg.png)
Where
![AE = EC](https://img.qammunity.org/2022/formulas/mathematics/high-school/nk5l6b306qppg742qacliv6wvotdxgc7eu.png)
![AC = 6.03 +6.03](https://img.qammunity.org/2022/formulas/mathematics/high-school/na8t8bu7qjnxjqmkzb82px50rlbz86i34b.png)
![AC = 12.06](https://img.qammunity.org/2022/formulas/mathematics/high-school/fre835dn2ns13stfcsrq89hze5hy7pj4w6.png)
Question 12: Isosceles Triangle
In the rhombus, all 4 sides are equal;
So, the isosceles triangle are:
,
,
and
![\triangle DAB](https://img.qammunity.org/2022/formulas/mathematics/college/bp2gmxgjd2wwjuyptldgzvsy4eo7owjzz8.png)
Question 13:
AC and BD are perpendicular lines, and they are diagonals