Answer:
a) The expression for the height, 'H', of the plant after 't' day is;
![H = \frac{30}{1 + 5\cdot e^{-(2.02732554 * 10^(-3)) \cdot t}}](https://img.qammunity.org/2022/formulas/mathematics/college/tra8g7u1zf6vy22ffl9dwa2wqdrbsh2jzk.png)
b) The height of the plant after 30 days is approximately 19.426 inches
Explanation:
The given maximum theoretical height of the plant = 30 in.
The height of the plant at the beginning of the experiment = 5 in.
a) The logistic differential equation can be written as follows;
![(dH)/(dt) = K \cdot H \cdot \left( M - {P} \right)](https://img.qammunity.org/2022/formulas/mathematics/college/gisu5e6z8b3vgcx1g8gonnnvsdcqj4smrd.png)
Using the solution for the logistic differential equation, we get;
![H = (M)/(1 + A\cdot e^(-(M\cdot k) \cdot t))](https://img.qammunity.org/2022/formulas/mathematics/college/154rj02ubo32vz40aa8sqgtuoyoav1se8j.png)
Where;
A = The condition of height at the beginning of the experiment
M = The maximum height = 30 in.
Therefore, we get;
![5 = (30)/(1 + A\cdot e^(-(30\cdot k) \cdot 0))](https://img.qammunity.org/2022/formulas/mathematics/college/zlh0j0nrypoangq16wyfdlsom33le9fx16.png)
![1 + A = (30)/(5) = 6](https://img.qammunity.org/2022/formulas/mathematics/college/45cxm8rp8asm66we60mxa6xpkspjtj0fe5.png)
A = 5
When t = 20, H = 12
We get;
![12 = (30)/(1 + 5\cdot e^(-(30\cdot k) \cdot 20))](https://img.qammunity.org/2022/formulas/mathematics/college/opc3iojygr1esgxkhqconrznxzo1s07olx.png)
![1 + 5\cdot e^(-(30\cdot k) \cdot 20) = (30)/(12) = 2.5](https://img.qammunity.org/2022/formulas/mathematics/college/kbqj5zqquv7zs3jdpca15wiabdp74dshkp.png)
![5\cdot e^(-(30\cdot k) \cdot 20) = 2.5 - 1 = 1.5](https://img.qammunity.org/2022/formulas/mathematics/college/dhrmyja10n1o4qp7qi8x6562xhlxmr7zvx.png)
∴ -(30·k)·20 = ㏑(1.5)
k = ㏑(1.5)/(30 × 20) ≈ 6·7577518 × 10⁻⁴
k ≈ 6·7577518 × 10⁻⁴
Therefore, the expression for the height, 'H', of the plant after 't' day is given as follows
![H = \frac{30}{1 + 5\cdot e^{-(30* 6.7577518 * 10^(-4)) \cdot t}} = \frac{30}{1 + 5\cdot e^{-(2.02732554 * 10^(-3)) \cdot t}}](https://img.qammunity.org/2022/formulas/mathematics/college/ksn52qawqe6993enrpq8nvgay60qwp3m15.png)
b) The height of the plant after 30 days is given as follows
![H = \frac{30}{1 + 5\cdot e^{-(2.02732554 * 10^(-3)) \cdot t}}](https://img.qammunity.org/2022/formulas/mathematics/college/tra8g7u1zf6vy22ffl9dwa2wqdrbsh2jzk.png)
At t = 30, we have;
![H = \frac{30}{1 + 5\cdot e^{-(2.02732554 * 10^(-3)) * 30}} \approx 19.4258866473](https://img.qammunity.org/2022/formulas/mathematics/college/m8ruezdtf58a1q5834uhoqst9hcw2kpf0o.png)
The height of the plant after 30 days, H ≈ 19.426 in.