224k views
2 votes
Evaluate the simultaneous equations 2x + 4y = 13; x + y = 4 by using the Elimination
Method.

User Flik
by
7.9k points

1 Answer

7 votes

Answer:

Look below

Explanation:


A. 2x + 4y = 13 \\ B.x + y = 4

Either remove the x or y

Lets do X first

In order to remove the 2 from eqaution A, we need to make the coefficient be the same for the x in the equation B.

We can multiply eqaution B by 2 in order to have the same x coefficient as eqaution A. In addition, we must make the 2 a negative (-2) in order to remove x.


-2(x + y = 4)

Now that we have the Xs ready for the elimination, we can proceed to answer for y


2x + 4y = 13 + (-2x -2y = -8) \\\\2x - 2x = 0 \\4y - 2y = 2y \\13 - 8 = 5 \\\\2y = 5

Now solve for y


y = 2.5

Now plug in 2.5 for either equation to find x ( in this case, B to make my life easier)


x + 2.5 = 4\\x = 1.5

Which in order to trust the other equation ( for some people to trust the answer for X -_-)


2x + 4(2.5) = 13\\2x + 10 = 13\\2x = 3\\x = 1.5

And from there, we conclude that x = 1.5 and y = 2.5

Now, we can get the same result if we eliminated y instead of x

(also this is copy and pasted from x because I am too lazy, get use to it)

In order to remove the 4 from eqaution A, we need to make the coefficient be the same for the y in the equation B.

We can multiply eqaution B by 4 in order to have the same x coefficient as eqaution A. In addition, we must make the 4 a negative (-4) in order to remove x.


-4(x + y = 4)

Now that we have the Ys ready for the elimination, we can proceed to answer for x


2x + 4y = 13 + (-4x -4y = -16) \\\\2x - 4x = -2x \\4y - 4y = 0y \\13 - 16 = 5 \\\\-2x = -3

Now solve for x


\\x = 1.5

Afterward, we are then able to do the same thing to find Y as we did previously in the previous section

Was this worth my time? No

Was it worth it? Yes

Why? I did this instead of a buddy's speech, so lol its funny to me lol

User Earcam
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories