102k views
0 votes
Please help!!!!!!! (100 points!!!!)

How many solutions exist for the equation cos 2θ − sin^2 θ = 0 on the interval [0, 360°)?

3
2
1
0

2 Answers

3 votes

Answer:

4 solution

Explanation:

cos 2θ − sin^2 θ = 0

Use trig identity cos 2θ = 1 - 2sin² θ

cos 2θ − sin^2 θ = 0

1 - 2sin² θ − sin^2 θ = 0

-3sin² θ = -1

sin² θ = 1/3

sin θ = ±√(1/3)

The reference angle is 35.26°.

Since the interval is [0, 360°), there are 4 solutions:

35.26°, 144.74°, 215.26°, 324.74°

There are 4 solutions.

User AndySavage
by
3.4k points
8 votes

Answer:

There lies 2 solutions.

Explanation:


cos\:2x\:-\:sin^2\:x\:=\:0\:

rewrite the expression:


\cos ^2\left(x\right)-2\sin ^2\left(x\right)=0

Factor the expression:


\left(\cos \left(x\right)+√(2)\sin \left(x\right)\right)\left(\cos \left(x\right)-√(2)\sin \left(x\right)\right)=0

solve them separately:


\cos \left(x\right)+√(2)\sin \left(x\right)=0\quad \ \ or \ \ \cos \left(x\right)-√(2)\sin \left(x\right)=0

final answer:


35.26438^(\circ \:) ,
215.3^(\circ \:)

User Trix
by
3.2k points