164,236 views
45 votes
45 votes
Please help! (100 points!)

Please help! (100 points!)-example-1
User Dachstein
by
3.1k points

2 Answers

17 votes
17 votes

Answer:


y=(\pi)/(3)

Explanation:

Given equation:


\sin (x+y) =(1)/(2) \sin(x) +(√(3))/(2) \cos(x)


\boxed{\begin{minipage}{6 cm}\underline{Trigonometric Identity}\\\\$\sin (A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$\\\end{minipage}}

Use the sine trigonometric identity to rewrite sin(x+y) in terms of sin and cos:


\implies \sin(x+y)= \sin (x) \cos (y) + \cos (x) \sin (y)

Substitute this into the given equation:


\begin{aligned}\sin (x+y) & =(1)/(2) \sin(x) +(√(3))/(2) \cos(x)\\\\\implies \sin (x) \cos (y) + \cos (x) \sin (y) & =(1)/(2) \sin(x) +(√(3))/(2) \cos(x)\end{aligned}

Compare the left side of the equation with the right side:


\implies \cos (y) = (1)/(2)


\implies \sin (y) = (√(3))/(2)

Therefore, solving for y:


\begin{aligned}\implies \cos (y) & = (1)/(2)\\y & = \cos^(-1)\left((1)/(2)\right)\\y & = (\pi)/(3)\end{aligned}


\begin{aligned}\implies \sin (y) & = (√(3))/(2)\\y & = \sin^(-1)\left((√(3))/(2)\right)\\y & = (\pi)/(3)\end{aligned}

User Okami
by
3.1k points
12 votes
12 votes


\\ \rm\Rrightarrow sin(x+y)=(1)/(2)sinx+(√(3))/(2)cosx


\\ \rm\Rrightarrow sin(x+y)=sinxcos\left((\pi)/(3)\right)+cosxsin\left((\pi)/(3)\right)

  • sin(a+b)=sinacosb+cosasinb


\\ \rm\Rrightarrow sin(x+y)=sin\left(x+(\pi)/(3)\right)


\\ \rm\Rrightarrow x+y=x+(\pi)/(3)


\\ \rm\Rrightarrow y=(\pi)/(3)

Option B is correct

User Ovabrandon
by
3.5k points