234k views
9 votes
Please help! (100 points!)

Please help! (100 points!)-example-1
User Gsiems
by
8.2k points

2 Answers

0 votes

Answer:


y=(\pi)/(3)

Explanation:

Given equation:


\sin (x+y) =(1)/(2) \sin(x) +(√(3))/(2) \cos(x)


\boxed{\begin{minipage}{6 cm}\underline{Trigonometric Identity}\\\\$\sin (A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$\\\end{minipage}}

Use the sine trigonometric identity to rewrite sin(x+y) in terms of sin and cos:


\implies \sin(x+y)= \sin (x) \cos (y) + \cos (x) \sin (y)

Substitute this into the given equation:


\begin{aligned}\sin (x+y) & =(1)/(2) \sin(x) +(√(3))/(2) \cos(x)\\\\\implies \sin (x) \cos (y) + \cos (x) \sin (y) & =(1)/(2) \sin(x) +(√(3))/(2) \cos(x)\end{aligned}

Compare the left side of the equation with the right side:


\implies \cos (y) = (1)/(2)


\implies \sin (y) = (√(3))/(2)

Therefore, solving for y:


\begin{aligned}\implies \cos (y) & = (1)/(2)\\y & = \cos^(-1)\left((1)/(2)\right)\\y & = (\pi)/(3)\end{aligned}


\begin{aligned}\implies \sin (y) & = (√(3))/(2)\\y & = \sin^(-1)\left((√(3))/(2)\right)\\y & = (\pi)/(3)\end{aligned}

User Emilie
by
7.8k points
10 votes


\\ \rm\Rrightarrow sin(x+y)=(1)/(2)sinx+(√(3))/(2)cosx


\\ \rm\Rrightarrow sin(x+y)=sinxcos\left((\pi)/(3)\right)+cosxsin\left((\pi)/(3)\right)

  • sin(a+b)=sinacosb+cosasinb


\\ \rm\Rrightarrow sin(x+y)=sin\left(x+(\pi)/(3)\right)


\\ \rm\Rrightarrow x+y=x+(\pi)/(3)


\\ \rm\Rrightarrow y=(\pi)/(3)

Option B is correct

User Sucre
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories