Answer:
2 and 10
Explanation:
We will assume to numbers represented by x and y.
From the question, we can write the following :
sum = x + y
difference = x - y
product = xy or x*y
Since we have two unknowns, general rule of thumb is that we require
2 equations to solve for them.
Using the ratio, of sum: difference and sum : product,
I can form these 2 equations:
(x + y) / (x -y) = 3/2 (1)
(x + y) / (x*y) = 3/5 (2)
In (1),
we cross multiply and do some tidying we will get
x = 5y
In (2),
we have 5x + 5y = 3x*y
We can then substitute x = 5y into (2) and get the following
5*5y + 5y = 3*5y*y
30y = 15y^2
2y = y^2
y^2 - 2y = 0
After factorization,
y(y - 2) = 0
you will have to options either use y = 0 or y = 2
If we use 2, then using equation (1),
we can solve for x which is 10.