Answer: 14
Explanation:
Given
Excavation cone measures
height
![h=6\ ft](https://img.qammunity.org/2022/formulas/mathematics/high-school/45phdutyw5j1876ootptdnzwy0kflbwywa.png)
Diameter
![d=30\ ft](https://img.qammunity.org/2022/formulas/mathematics/high-school/ah60u57a12hy1611nzdm6xpini6o5d9yfn.png)
Truck can dump
at a time
The volume of a cone is
![V=(1)/(3)\pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/a65ahxskq1o8fogzb7abmg5y31azaobu83.png)
Putting values
![\Rightarrow V=(1)/(3)* \pi* 15^2* 6\\\Rightarrow V=1413.9\approx 1414\ ft^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/la5zfu0s8ksxfz8c55a26i9wwlbe0kz2z4.png)
No of trips(N) required to accumulate this much volume is given by
![\Rightarrow N=(1414)/(125)=13.3\approx 14](https://img.qammunity.org/2022/formulas/mathematics/high-school/2jj2dcmm7rto3zibbngqtne5tnt7p784wh.png)
Therefore, 14 trips are necessary to accumulate a cone of volume
![1414\ ft^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/ck2gd4u3tb8ijduyun6ahbzcw51vk5jrgm.png)