27.4k views
20 votes
The steps to integrate this problem using trigonometric substitution.

The steps to integrate this problem using trigonometric substitution.-example-1
User Gesner
by
8.5k points

1 Answer

7 votes

Answer:


I=(x^3)/(3(25x^2+1)^(3/2))

Explanation:

(a)


5x=tan{\theta}\\x = (tan(\theta))/(5)\\dx=(1)/(5)\sec^2{\theta}d\theta\\


I=(1)/(125)\int\frac{tan^2{\theta}sec^2{\theta}}{(tan^2{\theta}+1)^(5/2)}d\theta


I=(1)/(125)\int\frac{tan^2{\theta}sec^2{\theta}}{sec^5{\theta}}d\theta


I=(1)/(125)\int\frac{tan^2{\theta}}{sec^3{\theta}}d\theta


I=(1)/(125)\int\sin^2{\theta}{cos{\theta}}d\theta


I=(1)/(125)\int\sin^2{\theta}dsin(\theta)


I=(1)/(125)(1)/(3)sin^3{\theta}}


I=(1)/(125)(1)/(3)((5x)/(√(25x^2+1))))^3

User Harsha Jayamanna
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories