120k views
3 votes
What is the distance between (2, 3) and (-2, 7)? Round to the nearest tenth, if necessary.

User Ronszon
by
4.5k points

1 Answer

5 votes

Answer:


\displaystyle d = 5.7

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Point (2, 3)

Point (-2, 7)

Step 2: Identify

(2, 3) → x₁ = 2, y₁ = 3

(-2, 7) → x₂ = -2, y₂ = 7

Step 3: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:
    \displaystyle d = √((-2-2)^2+(7-3)^2)
  2. [Distance] [√Radical] (Parenthesis) Subtract:
    \displaystyle d = √((-4)^2+(4)^2)
  3. [Distance] [√Radical] Evaluate exponents:
    \displaystyle d = √(16+16)
  4. [Distance] [√Radical] Add:
    \displaystyle d = √(32)
  5. [Distance] [√Radical] Simplify:
    \displaystyle d = 4√(2)
  6. [Distance] Evaluate:
    \displaystyle d = 5.65685
  7. [Distance] Round:
    \displaystyle d = 5.7
User Steen
by
4.5k points