148k views
2 votes
Encontrar las coordenadas del centro y la longitud del radio de la circunferencia 9x²+9y²+18x-12+10=0

User Chiggs
by
7.2k points

1 Answer

2 votes

Answer:

Explanation:

The standard form of equation of a circle is expressed as;

x^2+y^2+2gx+2fy+c = 0

The centre is at (-g, -f)

Given the equation'

9x²+9y²+18x-12+10=0

Divide through by 9

9x²/9+9y²/9+18x/9-12y/9+10/9=0

x^2+y^2+2x-4/3 y + 10/9 = 0

Compare

2gx = 2x

g = 1

2fy = -4/3 y

2f = -4/3

f = -4/6

f = -2/3

The centre is (-(-2/3), -1) = (2/3, -1)

for the radius

r = √f²+g²-c

r =√(-2/3)²+1²-10

r =√4/9 - 9

r = √(4-81)/9

r = √-77/9

User Sandeep Bhaskaran
by
7.5k points