154k views
2 votes
Find f(x) = sin^-1 (2x). Find the value of f'(0)

1 Answer

6 votes

Answer:


\displaystyle f'(0) = 2

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Function
  • Function Notation

Pre-Calculus

  • Arctrig notation

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Arctrig Derivative:
\displaystyle (d)/(dx)[arcsinu] = (u')/(√(1 - u^2))

Explanation:

Step 1: Define


\displaystyle f(x) = sin^(-1)(2x)

f'(0) is x = 0 for the 1st derivative function

Step 2: Differentiate

  1. [Derivative] Arctrig Derivative [Derivative Rule - Chain Rule]:
    \displaystyle f'(x) = ((d)/(dx)[2x])/(√(1 - (2x)^2))
  2. [Derivative] Basic Power Rule:
    \displaystyle f'(x) = (1 \cdot 2x^(1 - 1))/(√(1 - (2x)^2))
  3. [Derivative] Simplify:
    \displaystyle f'(x) = (2)/(√(1 - 4x^2))

Step 3: Evaluate

  1. Substitute in x [Derivative]:
    \displaystyle f'(0) = (2)/(√(1 - 4(0)^2))
  2. [√Radical] Exponents:
    \displaystyle f'(0) = (2)/(√(1 - 4(0)))
  3. [√Radical] Multiply:
    \displaystyle f'(0) = (2)/(√(1))
  4. [Fraction] Square Root:
    \displaystyle f'(0) = (2)/(1)
  5. [Fraction] Division:
    \displaystyle f'(0) = 2

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration - Special Functions (Arctrig)

Book: College Calculus 10e

User Raj Pawan Gumdal
by
4.1k points