I saw on your other question that you mention y (0) = 0. Let
f(x, y) = x + y ²
Now consider the recurrences in Euler's method,
![\begin{cases}x_0=0\\x_n=x_(n-1)+h&\text{for }n>0\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/of80f0k7zyhs7h684eao1q52l295kyw86z.png)
![\begin{cases}y_0=y(x_0)=0\\y_n=y_(n-1)+f(x_(n-1),y_(n-1))h&\text{for }n>0\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/tp02zow9kkj1fw3fix17xezv4a8fv67mc5.png)
where h is the step size.
We then approximate y (0.2) in ...
• ... 2 steps for h = 0.1 :
![\begin{cases}x_0=0\\y_0=0\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/9g627f00e9pi54ko8d209ixyrofp3176ho.png)
![\begin{cases}x_1=x_0+0.1=0.1\\y_1=y_0+f(x_0,y_0)*0.1=0\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/v2jp7ix79vvxpib6i79mwft8r8axursozl.png)
![\begin{cases}x_2=x_1+0.1=0.2\\y_2=y_1+f(x_1,y_1)*0.1=0.01\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/gqkup0nb6e8by49xjds1gqcmi4ye38wr5o.png)
so that y (0.2) ≈ 0.01;
• ... 4 steps for h = 0.05 :
![\begin{cases}x_0=0\\y_0=0\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/9g627f00e9pi54ko8d209ixyrofp3176ho.png)
![\begin{cases}x_1=x_0+0.05=0.05\\y_1=y_0+f(x_0,y_0)*0.05=0\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/me20j92r9r1ht5ds3250p0b9tjmvrpi99h.png)
![\begin{cases}x_2=x_1+0.05=0.1\\y_2=y_1+f(x_1,y_1)*0.05=0.0025\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/wrcod9wixif3gxglyk2u78ronmkqo8zpcb.png)
![\begin{cases}x_3=x_2+0.05=0.15\\y_3=y_2+f(x_2,y_2)*0.05=0.0075003125\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/yv5g8ivolidz8pf24toopwxmsl6crrkj0d.png)
![\begin{cases}x_4=x_3+0.05=0.2\\y_4=y_3+f(x_3,y_3)*0.05=0.0150031252343798828125]()
so y (0.2) ≈ 0.015.