Answer:
Heat loss per unit length = 642.358 W/m
The heat loss per unit length on a breezy day during 8 m/s speed is = 1760.205 W/m
Step-by-step explanation:
From the information given:
Diameter D
![= 100 mm = 0.1 m](https://img.qammunity.org/2022/formulas/physics/college/ebsiy5oxbdh539sdhzht5tkbkwsokq019c.png)
Surface emissivity ε = 0.8
Temperature of steam
= 150° C = 423K
Atmospheric air temperature
![T_(\infty) = 20^0 \ C = 293 \ K](https://img.qammunity.org/2022/formulas/physics/college/3yjgs2usg9qiiorkj063c7m7okh67a4036.png)
Velocity of wind V = 8 m/s
To calculate average film temperature:
![T_f = (T_s+T_(\infty))/(2)](https://img.qammunity.org/2022/formulas/physics/college/d1tqxt5cce3g5a0vv961egwxvygt9m1bhc.png)
![T_f = (423+293)/(2)](https://img.qammunity.org/2022/formulas/physics/college/kntpjp5yj7sfrvw4pguj75abhjxamj0oua.png)
![T_f = (716)/(2)](https://img.qammunity.org/2022/formulas/physics/college/nnqlf8py5wmmwa35rz4g5fzhxaux5keuh3.png)
![T_f = 358 \ K](https://img.qammunity.org/2022/formulas/physics/college/cu6zq5qcnhnv7ctixpac5ub0umlzzc4fsq.png)
To calculate volume expansion coefficient
![\beta= (1)/(T_f) \\ \\ \beta= (1)/(358) \\ \\ \beta= 2.79 * 10^(-3) \ K^(-1)](https://img.qammunity.org/2022/formulas/physics/college/r20bmyvuw02ajwo9a1i5fizs0a0h5d76c2.png)
From the table of "Thermophysical properties of gases at atmospheric pressure" relating to 358 K of average film temperature; the following data are obtained;
Kinematic viscosity (v) = 21.7984 × 10⁻⁶ m²/s
Thermal conductivity k = 30.608 × 10⁻³ W/m.K
Thermal diffusivity ∝ = 31.244 × 10⁻⁶ m²/s
Prandtl no. Pr = 0.698
Rayleigh No. for the steam line is determined as follows:
![Ra_(D) = (g * \beta (T_s-T_(\infty)) * D_b^3)/(\alpha* v)](https://img.qammunity.org/2022/formulas/physics/college/ff3mh5l8jt752w90941ztjt9ut3o0eiirk.png)
![Ra_(D) = (9.8 * (2.79 *10^(-3))(150-20) * (0.1)^3)/((31.244* 10^(-6)) * (21.7984* 10^(-6)))](https://img.qammunity.org/2022/formulas/physics/college/osvpmyilxae1stts38431ycn0alefua7go.png)
![Ra_(D) = 5.224 * 10^6](https://img.qammunity.org/2022/formulas/physics/college/n143t1qmvh8bai1grloza1t0bhyffym2ok.png)
The average Nusselt number is:
![Nu_D = \Big \{ 0.60 + (0.387(Ra_D)^(1/6))/([ 1+ (0.559/Pr)^(9/16)]^(8/27)) \Big \}^2](https://img.qammunity.org/2022/formulas/physics/college/3j6afk9oba2uil2aq05qptdkfe6tubyruq.png)
![Nu_D = \Big \{ 0.60 + (0.387(5.224* 10^6)^(1/6))/([ 1+ (0.559/0.698)^(9/16)]^(8/27)) \Big \}^2](https://img.qammunity.org/2022/formulas/physics/college/adml1jj4yll39e64ddq0c3rwsz2kn4levy.png)
![Nu_D = \Big \{ 0.60 + (5.0977)/([ 1.8826]^(8/27))\Big \}^2](https://img.qammunity.org/2022/formulas/physics/college/refgt3fum2z5z7cah5kwjw7yhi04ppij7r.png)
![Nu_D = \Big \{ 0.60 + 4.226 \Big \}^2](https://img.qammunity.org/2022/formulas/physics/college/ddqd8z0a1remgmg12jtblfrhd9m7tcynhr.png)
![Nu_D = 23.29](https://img.qammunity.org/2022/formulas/physics/college/g3kmj0akmvz9wpixavrhsht2vq0f162jn7.png)
However, for the heat transfer coefficient; we have:
![h_D = (Nu_D* k)/(D_b) \\ \\ h_D = ((23.29) * (30.608 * 10^(-3) ))/(0.1)](https://img.qammunity.org/2022/formulas/physics/college/8nsz3uxu6ry5cj89tbt6m41qdk7h40ohb9.png)
![h_D = 7.129 \ Wm^2 .K](https://img.qammunity.org/2022/formulas/physics/college/n7nups8miapdfzhjfq2xpul0z2dvcsfs78.png)
Hence, Stefan-Boltzmann constant
![\sigma = 5.67 * 10^(-8) \ W/m^2.K^4](https://img.qammunity.org/2022/formulas/physics/college/owfdb2ddexcirwk7j4q70uwbax5po2mzxe.png)
Now;
To determine the heat loss using the formula:
![q'_b = q'_(ev) + q'_(rad) \\ \\ q'_b = h_D (\pi D_o) (T_t-T_(\infty))+\varepsilon(\pi D_b)\sigma (T_t^4-T_(\infty )^4)](https://img.qammunity.org/2022/formulas/physics/college/lnjv4rz0x89ie1p9w0qe8y1e4rjwo8elv2.png)
![q'_b = (7.129)(\pi*0.1) (423-293) + (0.8) (\pi*0.1) (5.67 *10^(-8)) (423^4-293^4) \\ \\ q'_b = 291.153 + 351.205 \\ \\ \mathbf{q'_b = 642.258 \ W/m}](https://img.qammunity.org/2022/formulas/physics/college/zw4wousavpkgex4xbsxrbwsezla40xxdpj.png)
Now; here we need to determine the Reynold no and the average Nusselt number:
![Re_D = (VD_b)/(v ) \\ \\ Re_D = (8 *0.1)/(21.7984 * 10^(-6)) \\ \\ Re_D = 3.6699 * 10^4](https://img.qammunity.org/2022/formulas/physics/college/nees3u63wbprbi0k1orhgwgmtlyrhvl4u1.png)
However, to determine the avg. Nusselt no by using Churchill-Bernstein correlation, we have;
![Nu_D = 0.3 + (0.62 * Re_D^(1/2)* Pr^(1/3))/([1+(0.4/Pr)^(2/3)]^(1/4)) [1+ ((Re_D)/(282000))^(5/8)]^(4/5)](https://img.qammunity.org/2022/formulas/physics/college/sngvyhn4uflmr67rlotgtqu83gg6mjkn9i.png)
![Nu_D = 0.3 + (0.62 * (3.6699*10^4)^(1/2)* (0.698)^(1/3))/([1+(0.4/0.698)^(2/3)]^(1/4)) [1+ ((3.669*10^4)/(282000))^(5/8)]^(4/5)](https://img.qammunity.org/2022/formulas/physics/college/aam3cvak5czn18sm08exc5egp8omibpzgv.png)
![Nu_D = (0.3 +(105.359)/(1.140)* 1.218) \\ \\ Nu_D = 112.86](https://img.qammunity.org/2022/formulas/physics/college/y0vfot25z1wfxwo4zil8y7afkwa716ea0o.png)
SO, the heat transfer coefficient for forced convection is determined as follows afterward:
![h_D = (Nu_(D)* k)/(D_b) \\ \ h_D = (112.86*30.608 *10^(-3))/(0.1) \\ \\ h_D = 34.5 \ W/m^2 .K](https://img.qammunity.org/2022/formulas/physics/college/f7vvpsvu3ufojzt20wz2am4p0llo667al5.png)
Finally; The heat loss per unit length on a breezy day during 8 m/s speed is:
![q'b = h_D (\pi D_b) (T_s-T_(\infty)) + \varepsilon (\pi D_b) \sigma (T_s^4-T_ {\infty}^4) \\ \\ q'b = (34.5) (\pi *0.1) (423-293) + (0.8) (\pi*0.1) (5.67*10^(-8)) (423^4 - 293^4) \\ \\ = 1409 +351.205 \\ \\ \mathbf{q'b = 1760.205 \ W/m}](https://img.qammunity.org/2022/formulas/physics/college/yggkmmj6ajzokb0avjtx13o1lpcux06y80.png)