92.9k views
5 votes
A group of particles of total mass 36 kg has a total kinetic energy of 398 J. The kinetic energy relative to the center of mass is 80 J. What is the speed of the center of mass

User Blablaenzo
by
4.1k points

1 Answer

5 votes

Answer:

4.203 m/s

Step-by-step explanation:

First, we solve for the translational kinetic energy (
K_{\text {trans }} ) in the definition of the total kinetic energy
\left(K_{\text {tot }}\right). We also have an equation for the definition of
K_{\text {trans }} (third line). From these two equations we can solve for the speed of the center of mass
\left(v_{\mathrm{CM}}\right)


\begin{aligned} </p><p>K_{\text {tot }} &amp;=K_{\text {trans }}+K_{\text {rot }} \\ </p><p>\Longrightarrow K_{\text {trans }} &amp;=K_{\text {tot }}-K_{\text {rot }} \\ </p><p>K_{\text {trans }} &amp;=(1)/(2) m_{\text {tot }} v_{\mathrm{CM}}^(2) \\ </p><p>\Rightarrow (1)/(2) m_{\text {tot }} v_{\mathrm{CM}}^(2) &amp;=K_{\text {tot }}-K_{\text {rot }} \\ </p><p>\Rightarrow v_{\mathrm{CM}} &amp;=\sqrt{\frac{2\left(K_{\text {tot }}-K_{\text {rot }}\right)}{m_{\text {tot }}}} \\ </p><p>&amp;=\sqrt{\frac{2(398 \mathrm{~J}-80 \mathrm{~J})}{36 \mathrm{~kg}}}=4.203 \frac{\mathrm{m}}{\mathrm{s}} </p><p>\end{aligned}

User Jacek Grobelny
by
4.5k points