Answer:
q(x) ≈ 0.60347x^2 +1.09861x +1
Explanation:
The derivative of an exponential function is ...
d(a^x)/dx = ln(a)·a^x
Then the second derivative is ...
d²(a^x)/dx² = ln(a)²·a^x
Here, you have a=3, so ...
q(0) = 3^0 = 1
q'(0) = ln(3)·3^0 = ln(3) ≈ 1.09861
q''(0) = ln(3)²·3^0 = ln(3)² ≈ 1.20695
__
The derivatives of p(x) are ...
p'(x) = 2ax +b ⇒ p'(0) = b = q'(0)
p''(x) = 2a ⇒ a = q''(0)/2
So, ...
q(x) = 1.20695/2x^2 +1.09861x +1
q(x) ≈ 0.60347x^2 +1.09861x +1