Answer:
![\displaystyle A = (20√(15))/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/kk7st265vphgsh47orwg33yh7ii16k5xt7.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Terms/Coefficients
- Graphing
- Exponential Rule [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{(1)/(n)}](https://img.qammunity.org/2022/formulas/mathematics/college/yqpyvbuov0tgbjo8vla0qsqp67pafn2fr7.png)
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Area - Integrals
U-Substitution
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/mbzma5ko9adwy11a9ubqwf8xelp4oacdkf.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/ln748bgla1kj7bmw1t7we4708kfq0vdpxy.png)
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/r5yh324r81plt97j3zrr5qi2xxczxlqi34.png)
Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2022/formulas/mathematics/college/q5am2gy1b61evzpfs9m2cpql6uqpdre726.png)
Area of a Region Formula:
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/uij08sp4x97gp23utcdwranet4linkrd6u.png)
Step-by-step explanation:
Step 1: Define
F: y = √(15 - x)
G: y = √(15 - 3x)
H: y = 0
Step 2: Find Bounds of Integration
Solve each equation for the x-value for our bounds of integration.
F
- Set y = 0: 0 = √(15 - x)
- [Equality Property] Square both sides: 0 = 15 - x
- [Subtraction Property of Equality] Isolate x term: -x = -15
- [Division Property of Equality] Isolate x: x = 15
G
- Set y = 0: 0 = √(15 - 3x)
- [Equality Property] Square both sides: 0 = 15 - 3x
- [Subtraction Property of Equality] Isolate x term: -3x = -15
- [Division Property of Equality] Isolate x: x = 5
This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.
We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).
Step 3: Find Area of Region
Integration Part 1
- Rewrite Area of Region Formula [Integration Property - Subtraction]:
![\displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/wwszqvpj6f9lcjw152y5idzrda3litk01c.png)
- [Integral] Substitute in variables and limits [Area of Region Formula]:
![\displaystyle A = \int\limits^(15)_0 {√(15 - x)} \, dx - \int\limits^5_0 {√(15 - 3x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/rg5rlv647ehrdcbdway70rh7dbjica8u97.png)
- [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle A = \int\limits^(15)_0 {(15 - x)^{(1)/(2)}} \, dx - \int\limits^5_0 {(15 - 3x)^{(1)/(2)}} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/dmo45m03r9kcwv74d9m79rikrgewfksaax.png)
Step 4: Identify Variables
Set variables for u-substitution for both integrals.
Integral 1:
u = 15 - x
du = -dx
Integral 2:
z = 15 - 3x
dz = -3dx
Step 5: Find Area of Region
Integration Part 2
- [Area] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle A = -\int\limits^(15)_0 {-(15 - x)^{(1)/(2)}} \, dx + (1)/(3)\int\limits^5_0 {-3(15 - 3x)^{(1)/(2)}} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/814j23aqjibdv6hl65w20wytdo9ida2sri.png)
- [Area] U-Substitution:
![\displaystyle A = -\int\limits^0_(15) {u^{(1)/(2)}} \, du + (1)/(3)\int\limits^0_(15) {z^{(1)/(2)}} \, dz](https://img.qammunity.org/2022/formulas/mathematics/college/7s5ly01wojfaey0nwdgooulmpmjv4zzemp.png)
- [Area] Reverse Power Rule:
![\displaystyle A = -(\frac{2u^{(3)/(2)}}{3}) \bigg|\limit^0_(15) + (1)/(3)(\frac{2z^{(3)/(2)}}{3}) \bigg|\limit^0_(15)](https://img.qammunity.org/2022/formulas/mathematics/college/znixe3l3tlgngwpktze13bjp610xrlm17y.png)
- [Area] Evaluate [Integration Rule - FTC 1]:
![\displaystyle A = -(-10√(15)) + (1)/(3)(-10√(15))](https://img.qammunity.org/2022/formulas/mathematics/college/j1u4beegfni2ws3pavlt1fl1oo9zkt32hv.png)
- [Area] Multiply:
![\displaystyle A = 10√(15) + (-10√(15))/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/7jny4hbjd83kthg5lryfqbtvohul26i21i.png)
- [Area] Add:
![\displaystyle A = (20√(15))/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/kk7st265vphgsh47orwg33yh7ii16k5xt7.png)
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e