104k views
1 vote
If


a = (2x + √(x) )/(x)
and

b = (1 - 2 √(x) )/( √(x) )
without sing a calculator, show that

(a + b) {}^(2) = (4)/(x)


User Danniella
by
3.4k points

1 Answer

2 votes

Answer:

Explanation:

Rationalize the denominator of b. So, multiply the numerator and denominator by
√(x)


b = ((1-2√(x)) *√(x))/(√(x)*√(x) )=(1*√(x) -2√(x) *√(x) )/(√(x) *√(x) )\\\\=(√(x) -2x)/(x)\\

Now, find a +b


a +b = (2x+√(x) )/(x)+(√(x) -2x)/(x)\\\\=(2x+√(x) +√(x) -2x)/(x)

Combine like terms


= (2x-2x+√(x) +√(x) )/(x)\\\\=(2√(x) )/(x)

Now find (a + b)²

(a +b)² =
((2√(x) )/(x))^(2)


= (2^(2)*(√(x) )^(2))/(x^(2))\\\\= (4* x)/(x^(2))\\\\= (4)/(x)

Hint:
√(x) *√(x) =√(x*x)=x

User Klogd
by
3.6k points