41.5k views
1 vote
Given cos theta = - 2/5 and sin theta < 0, find the six trigonometric values. I need help with this

User Wsda
by
7.6k points

1 Answer

4 votes

Answer:


\sin\,\theta =-(√(21) )/(5)


\tan\,\theta =(√(21) )/(2)


\sec\,\theta = (-5)/(2)


cosec\,\theta =(-5)/(√(21) )


\cot\,\theta =(2)/(√(21) )

Explanation:


\cos\theta =(-2)/(5)<0\\sin\theta <0

As both
sin\,\theta<0,\,\cos\,\theta <0,


\theta lies in the third quadrant.

In the third quadrant,


\sin\theta<0,\,\cos\,\theta <0\,,\,\sec\,\theta<0,\,cosec\theta<0,\,tan\,\theta>0,\,cot\,\theta>0


\sin\,\theta =-√(1-\cos^2\,\theta) \\=-\sqrt{1-((-2)/(5))^2 } \\\\=-\sqrt{1-(4)/(25) }\\\\=-\sqrt{(25-4)/(25) }\\\\=-(√(21) )/(5)


\tan\,\theta = (\sin\,\theta)/(\cos\,\theta )\\\\=((-√(21) )/(5) )/((-2)/(5) )\\\\=(√(21) )/(2)


\sec\,\theta =(1)/(\cos\,\theta )\\\\=(1)/((-2)/(5) )\\\\=(-5)/(2)


\ cosec \,\theta = (1)/(sin\,\theta )\\\\=(1)/((-√(21) )/(5) )\\\\=(-5)/(√(21) )


\cot\,\theta =(1)/(\tan\,\theta)\\\\=(1)/((√(21) )/(2) )\\\\=(2)/(√(21) )

User CrimsonDark
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories