Answer:
C
Explanation:
We want to integrate:
![\displaystyle \int(4x^4+3)/(4x^5+15x+2)\,dx](https://img.qammunity.org/2022/formulas/mathematics/college/leby4ckuf1ls8fg3z1kg5kn1lymv2j8dd3.png)
Notice that the expression in the denominator is quite similar to the expression in the numerator. So, we can try performing u-substitution. Let u be the function in the denominator. So:
![u=4x^5+15x+2](https://img.qammunity.org/2022/formulas/mathematics/college/39bqvaq50mylwa1neqzfq8e6joiy7dacxq.png)
By differentiating both sides with respect to x:
![\displaystyle (du)/(dx)=20x^4+15](https://img.qammunity.org/2022/formulas/mathematics/college/uaylzgie3mhgfr38seullqaudyds2yi9du.png)
We can "multiply" both sides by dx:
![du=20x^4+15\,dx](https://img.qammunity.org/2022/formulas/mathematics/college/7npaepctkr2vc4r2sfpjs9o0bz5s0288co.png)
And divide both sides by 5:
![\displaystyle (1)/(5)\, du=4x^4+3\,dx](https://img.qammunity.org/2022/formulas/mathematics/college/sg86mtf6kqq0sttbiz6om1k2wx9w72l7ii.png)
Rewriting our original integral yields:
![\displaystyle \int (1)/(4x^5+15x+2)(4x^4+3\, dx)](https://img.qammunity.org/2022/formulas/mathematics/college/bcwrddi9ey85m578n3drnsgj87pwmuekgx.png)
Substitute:
![\displaystyle =\int (1)/(u)\Big((1)/(5) \, du\Big)](https://img.qammunity.org/2022/formulas/mathematics/college/53lv6b8128bx7ur0aezwuyonu9kpcgfigm.png)
Simplify:
![\displaystyle =(1)/(5)\int (1)/(u)\, du](https://img.qammunity.org/2022/formulas/mathematics/college/axn7tss7k70c08p9zpwlvp7e12jlas2olk.png)
This is a common integral:
![\displaystyle =(1)/(5)\ln|u|](https://img.qammunity.org/2022/formulas/mathematics/college/z3g4m4dhmozr6yzf85n6ulzcj2cf5vkl2f.png)
Back-substitute. Of course, we need the constant of integration:
![\displaystyle =(1)/(5)\ln|4x^5+15x+2|+C](https://img.qammunity.org/2022/formulas/mathematics/college/6c9w0snh4x5ncw09mfnzyf9k15390idtmd.png)
Our answer is C.