Answer:
The coordinates of the point S could be;
A. (-1, -1)
Explanation:
The given parameters are;
The ratio of the length of the line RS to the length of the line RT = 1:2
The coordinates of point R = (2. 5)
The coordinates point T = (-4, -7)
Therefore, we have;
![(The \ length \ of \, RS)/(The \ length \ of \, RT) = (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6mqr4xai9us3rd3zm75nl2qg79tkwqd1fb.png)
![\therefore {The \ length \ of \, RS} = (1)/(2) * The \ length \ of \, RT](https://img.qammunity.org/2022/formulas/mathematics/high-school/9l11x4xs8lut3siez2zv47n0l48stbtqzn.png)
The length of the line RT = √(((2 - (-4))² + (5 - (-7))²) = 6·√5
Therefore, we have;
![{The \ length \ of \, RS} = (1)/(2) * 6\cdot √(5) = 3 \cdot √(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u8oc63f3hiuxquqv7h0zgcu5js1uhjbq27.png)
When the coordinates of the point S = (-1, -1), we have;
The length of the line RS = √(((2 - (-1))² + (5 - (-1))²) = √45 = 3·√5
Therefore, the coordinates of the point S could be (-1, -1)