180k views
0 votes
Given the function y=-\frac{3\sqrt{x^5}}{4},y=− 4 3 x 5 ​ ​ , find \frac{dy}{dx}. dx dy ​ . Express your answer in radical form without using negative exponents, simplifying all fractions.

User Filsa
by
4.8k points

1 Answer

5 votes

Given:

The function is:


y=-(3√(x^5))/(4)

To find:

The value of
(dy)/(dx).

Solution:

We have,


y=-(3√(x^5))/(4)

It can be written as


y=-(3)/(4)x^{(5)/(2)}
[\because \sqrt[n]x=x^(1)/(n)]

Differentiate with respect to x.


(dy)/(dx)=-(3)/(4)* (5)/(2)x^{(5)/(2)-1}
[\because (d)/(dx)x^n=nx^(n-1)]


(dy)/(dx)=-(15)/(8)x^{(5-2)/(2)}


(dy)/(dx)=-(15)/(8)x^{(3)/(2)}


(dy)/(dx)=-(15)/(8)√(x^3)

Therefore, the value of
(dy)/(dx) is
-(15)/(8)√(x^3).

User Binara Thambugala
by
4.9k points