Answer:
9.364 is the expected number of points.
we can approximate this to 10 points if we want a whole number
Explanation:
We have these variables:
[0,5,10,15]
P(x= 0) = p(y>20)+p(y<-20) = 2p(y>20)
P(x=5) = p(-20<=y<=10)+p(10<=y<=20) = 2p(10<=y<=20)
P(x=10) = p(-10<=y<=-3)+p(3<=y<=10) = 2p(3<=y<=10)
P(x=15) = p(-3<=y<=3) = 2p(0<=y<=3)
Z = y/10
Therefore
P(x= 0) = 2(y>20)
= 2p(z>2) = 2(1-p<=2)
= 2(1-0.9772)
= 0.0456
P(x= 5)
= 2p(10<=y<=20)
= 2p(1<=z<=2)
= 2(0.9772-0.8413)
= 0.2718
P(x= 10)
= 2p(3<=y<=10)
= 2p(0.3<=z<=1)
= 2(0.8413-0.6179)
= 0.4468
P(x = 15)
= P(0.6179-0.3821)
= 0.2358
To get expected value of Y
0(0.0456)+5(0.2718)+10(0.4468)+15(0.2358)
= 1.359 + 4.468 + 3.537
= 9.364
E[Y] = 9.364