122k views
5 votes
Find the centroid of ABC if
A = (2, 2), B = (-1,0), and C = (8,4).
([?], [ ])

Find the centroid of ABC if A = (2, 2), B = (-1,0), and C = (8,4). ([?], [ ])-example-1
User RogerParis
by
4.2k points

2 Answers

5 votes

Answer:

The centroid of ABC is (3 , 2).

Explanation:

The steps are :


centre = ( (x1 + x2 + x3)/(3) \: , \: (y1 + y2 + y3)/(3) )


centre = ( (2 + ( - 1) + 8)/(3) \: , \: (2 + 0 + 4)/(3) )


centre = ( (9)/(3) \: , \: (6)/(3) )


centre = (3 \: , \: 2)

User Aonghas M
by
4.3k points
1 vote

Answer:

The centroid of ∆ABC is (3 , 2).

Step-by-step explanation:

Solution :

Here's the required formula to find the centroid of ∆ABC :


{\star{\footnotesize{\purple{\underline{ \boxed{\sf{\pink{Centroid = \bigg( (x_1 + x_2 + x_3)/(3) \: , \: (y_1 + y_2 + y_3)/(3) \bigg)}}}}}}}}

Where :


  • \rightarrow\rm{x_1} = 2

  • \rightarrow\rm{x_2} = -1

  • \rightarrow\rm{x_3} = 8

  • \rightarrow\rm{y_1} = 2

  • \rightarrow\rm{y_2} = 0

  • \rightarrow\rm{y_3} = 4

Substituting all the given values in the formula to find the centroid of ∆ABC


{\implies{\small{\sf{Centroid = \bigg( (x_1 + x_2 + x_3)/(3) \: , \: (y_1 + y_2 + y_3)/(3) \bigg)}}}}


{\implies{\small{\sf{Centroid = \bigg( (2 + ( - 1) + 8)/(3) \: , \: (2 +0 + 4)/(3) \bigg)}}}}


{\implies{\small{\sf{Centroid = \bigg( (2 - 1 + 8)/(3) \: , \: (2 +0 + 4)/(3) \bigg)}}}}


{\implies{\small{\sf{Centroid = \bigg( (10 - 1)/(3) \: , \: (2 + 4)/(3) \bigg)}}}}


{\implies{\small{\sf{Centroid = \bigg( (9)/(3) \: , \: (6)/(3) \bigg)}}}}


{\implies{\small{\sf{Centroid = \bigg( \cancel(9)/(3) \: , \: \cancel(6)/(3) \bigg)}}}}


{\implies{\small{\sf{Centroid = \Big( 3\: , \: 2 \Big)}}}}


\star{\underline{\boxed{\rm{\red{Centroid = \Big( 3\: , \: 2 \Big)}}}}}

Hence, the centroid of ∆ABC is (3 , 2).


\rule{300}{1.5}