Answer:
![f(x)=2(x-2)(x^2+64)](https://img.qammunity.org/2022/formulas/mathematics/college/xbjg71oe7cfwwjq3gu6trp22ugh1ej6jhq.png)
Explanation:
A standard polynomial in factored form is given by:
![f(x)=a(x-p)(x-q)...](https://img.qammunity.org/2022/formulas/mathematics/college/5p6axh4b66b0l6kmr9s7xt926rs1lbo4eu.png)
Where p and q are the zeros.
We want to find a third-degree polynomial with zeros x = 2 and x = -8i and equals 320 when x = 4.
First, by the Complex Root Theorem, if x = -8i is a root, then x = 8i must also be a root.
Therefore, we acquire:
![f(x)=a(x-(2))(x-(-8i))(x-(8i))](https://img.qammunity.org/2022/formulas/mathematics/college/2rg9ri0mhgh1psk8cygtcwd876w0f1lljr.png)
Simplify:
![f(x)=a(x-2)(x+8i)(x-8i)](https://img.qammunity.org/2022/formulas/mathematics/college/qz9giul6im8vyqddk1496fdpcqtnx3z8v1.png)
Expand the second and third factors:
![=(x+8i)x+(x+8i)(-8i)\\\\=(x^2+8ix)+(-8ix-64i^2)\\\\=(x^2)+(8ix-8ix)+(-64i^2)\\\\=x^2-64(-1)\\\\ =x^2+64](https://img.qammunity.org/2022/formulas/mathematics/college/p3uf0w3vgle2fycnhublon4q31to1xcsun.png)
Hence, our function is now:
![f(x)=a(x-2)(x^2+64)](https://img.qammunity.org/2022/formulas/mathematics/college/6r13e2yi2ht2q6qx2e4kk828dv37x4zped.png)
It equals 320 when x = 4. Therefore:
![320=a(4-2)(4^2+64)](https://img.qammunity.org/2022/formulas/mathematics/college/p1k6euf2pcu8rsimx2wvp38llqq33ygtn2.png)
Solve for a. Evaluate:
![320=(2)(80)a](https://img.qammunity.org/2022/formulas/mathematics/college/d5lkr0646v42y5xj3988ghss16qacshccn.png)
So:
![320=160a\Rightarrow a=2](https://img.qammunity.org/2022/formulas/mathematics/college/ibn96zcgxekw7lrpttsntxd48u11b5va9g.png)
Our third-degree polynomial equation is:
![f(x)=2(x-2)(x^2+64)](https://img.qammunity.org/2022/formulas/mathematics/college/xbjg71oe7cfwwjq3gu6trp22ugh1ej6jhq.png)