131k views
16 votes
Find first derivative f(x)= x² - 4 /x³ + 9 ​

2 Answers

5 votes

Answer:

f'(x) = 2x +
(12)/(x^(4) )

Explanation:

differentiate using the power rule


(d)/(dx) ( a
x^(n) ) = na
x^(n-1)

Given

f(x) = x² -
(4)/(x^3) + 9 = x² - 4
x^(-3) + 9 , then

f'(x) = 2x + 12
x^(-4) = 2x +
(12)/(x^(4) )

User Tami
by
4.6k points
0 votes

Answer:


f'(x)=2x+(12)/(x^4)

Explanation:


f(x)=x^2-(4)/(x^3)+9

Apply exponent rule
(1)/(a^b)=a^(-b):


\implies f(x)=x^2-4x^(-3)+9

Differentiate using the power rule
(d)/(dx)(x^a)=a \cdot x^(a-1) :


\implies f'(x)=2 \cdot x^(2-1)-(-3)4x^(-3-1)+0


\implies f'(x)=2x+12x^(-4)


\implies f'(x)=2x+(12)/(x^4)

User Jyavenard
by
4.4k points