81.3k views
2 votes
Considering only the values of
\beta for which
\sin \beta \tan \beta \sec \beta \cot \beta is defined, which of the following expressions is equivalent to
\sin \beta \tan \beta \sec \beta \cot \beta?

a.
\sec \beta \cot \beta
b.
\tan \beta
c.
\cot \beta \tan \beta
d.
\tan \beta \csc \beta \sec \beta

User Chomeh
by
3.3k points

2 Answers

4 votes

Answer:


\huge \boxed{ \boxed{ \red{b) \tan( \beta ) }}}

Explanation:

to understand this

you need to know about:

  • trigonometry
  • PEMDAS

given:


  • \sin \beta \tan \beta \sec \beta \cot \beta

tips and formulas:


  • \tan( \theta) = ( \sin( \theta) )/( \cos( \theta) )

  • \cot( \theta) = ( \cos( \theta) )/( \sin( \theta) )

  • \sec( \theta) = (1)/( \cos( \theta) )

let's solve:


  1. \sf rewrite \: \tan( \beta ) \: as \: ( \sin( \beta ) )/( \cos( \beta ) ) : \\\sin (\beta ) \cdot( \sin( \beta ) )/( \cos( \beta ) ) \cdot \sec (\beta ) \cdot\cot (\beta)

  2. \sf rewrite \: \sec( \beta ) \: as \: (1 )/( \cos( \beta ) ) : \\\sin (\beta) \cdot( \sin( \beta ) )/( \cos( \beta ) ) \cdot (1)/( \cos( \beta ) ) \cdot\cot (\beta)

  3. \sf rewrite \: \cot( \beta ) \: as \: ( \cos( \beta ) )/( \sin( \beta ) ) : \\\sin (\beta) \cdot( \sin( \beta ) )/( \cos( \beta ) ) \cdot (1)/( \cos( \beta ) ) \cdot \: ( \cos( \beta ) )/( \sin( \beta ) )

  4. \sf \: cancel \: sin : \\\sin (\beta) \cdot\frac{ \cancel{\sin( \beta ) }}{ \cos( \beta ) } \cdot (1)/( \cos( \beta ) ) \cdot \: \frac{ \cos( \beta ) }{ \cancel{\sin( \beta ) }} \\ \sin (\beta) \cdot( 1 )/( \cos( \beta ) ) \cdot (1)/( \cos( \beta ) ) \cdot \: \cos( \beta ) \\

  5. \sf cancel \: cos : \\ \sin (\beta) \cdot( 1)/( \cos( \beta ) ) \cdot \frac{1}{ \cancel{ \cos( \beta )} } \cdot \: \cancel{ \cos( \beta ) } \\ \\ \sin( \beta ) \: \cdot \: ( 1 )/( \cos( \beta ) )

  6. \sf \: simplify \: multipication : \\ ( \sin( \beta ) )/( \cos( \beta ) )

  7. \sf use \: ( \sin( \beta ) )/( \cos( \beta ) ) = \tan( \beta ) \: identity : \\ \therefore \: \tan( \beta )

User Lakenya
by
4.0k points
4 votes


\large\boxed{Answer:}

We will use trigonometric identities to solve this. I will use θ (theta) for the angle.

First of all, we know that cotθ = 1/tanθ. This is a trigonometric identity.

We can replace cotθ in the expression with 1/tanθ.


sin\theta tan\theta sec\theta (1)/(tan\theta)

Simplify: 1/tanθ * tanθ = tanθ/tanθ = 1

So now, we have:


sin\theta sec\theta

Next, we also know that secθ = 1/cosθ. This is another trigonometric identity.

We can replace secθ with 1/cosθ in our expression.


sin\theta (1)/(cos\theta)

Simplify:


(sin\theta)/(cos\theta)

Our third trigonometric identity that we will use is tanθ = sinθ/cosθ.

We can replace sinθ/cosθ with tanθ.

Now we have as our final answer:


\large\boxed{b.\ tan\theta}

Hope this helps!

User DEFL
by
4.4k points