Answer:
900 K
Step-by-step explanation:
Recall the ideal gas law:
![\displaystyle PV = nRT](https://img.qammunity.org/2023/formulas/chemistry/high-school/c9it7y750eudc393tkkhovzkfkfeojsx4a.png)
Because only pressure and temperature is changing, we can rearrange the equation as follows:
![\displaystyle (P)/(T) = (nR)/(V)](https://img.qammunity.org/2023/formulas/chemistry/high-school/nh91yzm129bzqi9zrzdxtn84ylsqkw938q.png)
The right-hand side stays constant. Therefore:
![\displaystyle (P_1)/(T_1) = (P_2)/(T_2)](https://img.qammunity.org/2023/formulas/chemistry/high-school/u6yxorty4ixok17rvqyz9gqpdy4t7jttrm.png)
The can explodes at a pressure of 90 atm. The current temperature and pressure is 300 K and 30 atm, respectively.
Substitute and solve for T₂:
![\displaystyle \begin{aligned} \frac{(30\text{ atm})}{(300\text{ K})} & = \frac{(90\text{ atm})}{T_2} \\ \\ T_2 & = 900\text{ K}\end{aligned}](https://img.qammunity.org/2023/formulas/chemistry/high-school/263beuti11bqgkqu0uvkb0a6lh8nr0ezmm.png)
Hence, the temperature must be reach 900 K.