Answer:
25
Explanation:
Given the expression x^2 - 10x + 8 = 0.
According to completing the square method
Subtract 8 from both sides
x^2 - 10x + 8 - 8 = 0 - 8
x^2 - 10x = -8
Complete the square
Add the square of half of coefficient of x to both sides
Coefficient of x = -10
Half of Coefficient of x = -10/2
Half of Coefficient of x = -5
Square of Half of Coefficient of x = (-5)^2
Square of Half of Coefficient of x = 25
Add (-5)^2 to both sides
x^2 - 10x + (-5)^2 = -8 + (-5)^2
(x-5)^2 = -8 + 25
(x-5)^2 = 17
Hence the required constant that was added is 25