Answer:
![((3)/(2),102)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wcsjrrmk3tzz9dq4az56xg19rfelrd3cbt.png)
Explanation:
Given
--- Missing from the question
Required
The symmetry
First, we express f(x) as:
![f(x) = a(x - h)^2 + k](https://img.qammunity.org/2022/formulas/mathematics/college/qm8zk43n8ciacfr2ttc8abunbjfuqaqzon.png)
Where the symmetry is: (h, y) and x = h
Equate f(x) to 0
![88x^2-264x+300 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/5x888ngf7wrxe0noc32f7ds96yklkm4ndg.png)
Subtract 300 from both sides
![88x^2-264x+300 - 300= 0 - 300](https://img.qammunity.org/2022/formulas/mathematics/high-school/uoplzl0uti20e5r8qb7wvt18skc82ijz9c.png)
![88x^2 - 264x= - 300](https://img.qammunity.org/2022/formulas/mathematics/high-school/3jy4xkyu5wi17kvizvzjf1jx2xpxipmod0.png)
Factorize
![88(x^2 - 3x) = -300](https://img.qammunity.org/2022/formulas/mathematics/high-school/efrrtwrlcvom0rpnmey3nnpogt6vs7acmo.png)
On the left-hand side, the coefficient of x is -3.
Divide by 2 and add the square to both sides.
So, we have:
![88(x^2 - 3x) + ((3)/(2))^2 = -300 + ((3)/(2))^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/snv2a3tfgw1r9jc7olr4ljd9cut9c71pnz.png)
Multiply the new terms by 88 (to make it factorizable)
![88(x^2 - 3x ) +88* ((3)/(2))^2 = -300 + 88 * ((3)/(2))^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/i5ecmpl4q76jta9ij37y6i129asz54f82h.png)
Factorize
![88(x^2 - 3x + ((3)/(2))^2) = -300 + 88 * ((3)/(2))^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/xszsbublxkyvn7ev0s374zwmpuk2p0mu56.png)
The quadratic expression in the bracket is a perfect square. This gives:
![88(x - (3)/(2))^2 = -300 + 88 * ((3)/(2))^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/r4r16kpdqtmmr9w46xi94jum8inncfcfk7.png)
![88(x - (3)/(2))^2 = -300 + 88 * (9)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6fxneh0n0fucfbzo9hiat3z7xj6vbzisq3.png)
![88(x - (3)/(2))^2 = -300 + 22 * 9](https://img.qammunity.org/2022/formulas/mathematics/high-school/r0qaun8puudatj9e82wp1enlvc1igwpx8u.png)
![88(x - (3)/(2))^2 = -102](https://img.qammunity.org/2022/formulas/mathematics/high-school/61wro0sum3iuhvmx0wi8j4aem2uoa55rxn.png)
Add 102 to both sides
![88(x - (3)/(2))^2 +102= -102 + 102](https://img.qammunity.org/2022/formulas/mathematics/high-school/xmbclv04n51rn4qvudrvz2owsjsutb24qm.png)
![88(x - (3)/(2))^2 +102= 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/cv5xp5d4t2gkymke2eirxs12gcyu924uga.png)
Equate to y
![y = 88(x - (3)/(2))^2 +102](https://img.qammunity.org/2022/formulas/mathematics/high-school/1gj9hpyrqba2bemnaidoxylymi31z2yo1d.png)
Recall that:
The symmetry is: (h, y)
By comparison with
and x = h
![h = (3)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cke51lte0n4amze5g8icr3i8zyfdva2zyo.png)
So:
![x = (3)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dskrsrpm4k3ezw9yma54bjopr49t87ib23.png)
Substitute
in
![y = 88(x - (3)/(2))^2 +102](https://img.qammunity.org/2022/formulas/mathematics/high-school/1gj9hpyrqba2bemnaidoxylymi31z2yo1d.png)
![y = 88((3)/(2) - (3)/(2))^2 +102](https://img.qammunity.org/2022/formulas/mathematics/high-school/3pnu28mnhrl5r79m6j2fe2316k1texq3bl.png)
![y = 88(0)^2 +102](https://img.qammunity.org/2022/formulas/mathematics/high-school/uzr4m8kniowkjt19rcb6aej6u0kpcww6qq.png)
![y = 0 +102](https://img.qammunity.org/2022/formulas/mathematics/high-school/2qmlfisv7aa2ce0e69oghv15eq4esv6bd5.png)
![y = 102](https://img.qammunity.org/2022/formulas/mathematics/high-school/zs01wr86v9c6fuk9ii6qo9ej4m2zfh2rg3.png)
So, the symmetry is:
![((3)/(2),102)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wcsjrrmk3tzz9dq4az56xg19rfelrd3cbt.png)