22.4k views
1 vote
PLEASE HELP!!!
d/dx(e^2x)=d/dx(e^x*e^x)=?

1 Answer

5 votes

Answer:


\displaystyle (d)/(dx)[e^(2x)] = 2e^(2x)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Calculus

Derivatives

Derivative Notation

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

eˣ Derivative:
\displaystyle (d)/(dx) [e^u]=e^u \cdot u'

Explanation:

Step 1: Define


\displaystyle (d)/(dx)[e^(2x)]

Step 2: Differentiate

  1. [Derivative] eˣ Derivative [Chain Rule]:
    \displaystyle (d)/(dx)[e^(2x)] = 2x^(1 - 1) \cdot e^(2x)
  2. [Derivative] Simplify:
    \displaystyle (d)/(dx)[e^(2x)] = 2x^(0) \cdot e^(2x)
  3. [Derivative] Simplify:
    \displaystyle (d)/(dx)[e^(2x)] = 2(1) \cdot e^(2x)
  4. [Derivative] Multiply:
    \displaystyle (d)/(dx)[e^(2x)] = 2 \cdot e^(2x)
  5. [Derivative] Multiply:
    \displaystyle (d)/(dx)[e^(2x)] = 2e^(2x)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

User Eno
by
6.9k points