Answer:
D₁ = 3.31 m
D₂ = 0.9 m
Step-by-step explanation:
First, we will find the scaling factor of the model:
![Scaling\ Factor = S.F = (Distance\ between\ Earth\ and\ moon\ in\ Model)/(Distance\ between\ Earth\ and\ moon\ in\ Actual)\\S.F = (100\ m)/(384400000\ m)\\](https://img.qammunity.org/2022/formulas/chemistry/college/1tv5cuhj847r79t450za50b308obnglewd.png)
S.F = 2.6 x 10⁻⁷
Now, the diameter of 1st sphere, that is Earth will be:
![D_(1) = (S.F)(Actual\ Diameter\ of\ Earth)\\D_(1) = (2.6\ x 10^(-7)\ m)(12742000\ m)\\](https://img.qammunity.org/2022/formulas/chemistry/college/gf3998mwy9tixkwthkl3279dcm77d6b0hg.png)
D₁ = 3.31 m
Now, the diameter of 2nd sphere, that is Moon will be:
![D_(2) = (S.F)(Actual\ Diameter\ of\ Moon)\\D_(2) = (2.6\ x 10^(-7)\ m)(3474200\ m)\\](https://img.qammunity.org/2022/formulas/chemistry/college/78ars9n3rb3h4dn4l7upuny4fue39nq8uk.png)
D₂ = 0.9 m