Answer:
![h = \sqrt[3]{(49V)/(4)}](https://img.qammunity.org/2022/formulas/mathematics/college/gq4f0nst5x9yeadkallm7q7fqdqsrhcjao.png)
Explanation:
Represent the volume of the box with V and the dimensions with l, b and h.
The volume (V) is:
![V = l * b * h](https://img.qammunity.org/2022/formulas/mathematics/college/pe5lsk1d4f7xrknrj71q4n9dbzmzhrb0pp.png)
Make h the subject of the formula
![h = (V)/(lb)](https://img.qammunity.org/2022/formulas/mathematics/college/szel9pyfhwxlqrg69n9s330k8b71bfwyc8.png)
The surface area (S) of the aquarium is:
![S = lb + 2(lh + bh)](https://img.qammunity.org/2022/formulas/mathematics/college/bzvxjyxj7dff0qdjv0az5sc8y0tdwaajr1.png)
Where lb represents the area of the base (i.e. slate):
The cost (C) of the surface area is:
![C = 7 * lb + 1 * 2(lh + bh)](https://img.qammunity.org/2022/formulas/mathematics/college/elqy7hrihqnikdor9amu2ra79bxct4c0k1.png)
![C = 7lb + 2(lh + bh)](https://img.qammunity.org/2022/formulas/mathematics/college/pdytvcfqyoizqalssx0im9ppxbnz6mj2r9.png)
![C = 7lb + 2h(l + b)](https://img.qammunity.org/2022/formulas/mathematics/college/3znzmo9xh5l1ezrb6c0nc4lw43r6o8eigu.png)
Substitute
for h in the above equation
![C = 7lb + 2*(V)/(lb)(l + b)](https://img.qammunity.org/2022/formulas/mathematics/college/g4jvfdff1fu3qsve0t3715tkwamgvwo1yq.png)
![C = 7lb + (2V)/(lb)(l + b)](https://img.qammunity.org/2022/formulas/mathematics/college/6jufrvisc117bzsyptzfl1hg984rm4ho46.png)
![C = 7lb + (2V)/(b) + (2V)/(l)](https://img.qammunity.org/2022/formulas/mathematics/college/5vr4s4dd655jvqozllwqabmjxk9xkvuyiv.png)
Differentiate with respect to l and with respect to b
![=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/r373fxzseligr4bha8qwl8806f6nm1180q.png)
![=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/r373fxzseligr4bha8qwl8806f6nm1180q.png)
To solve for b and l, we equate both equations and set l to b (to minimize the cost)
![7b - (2V)/(l^2)=7l - (2V)/(b^2)](https://img.qammunity.org/2022/formulas/mathematics/college/qmv5foo8cf8plqrp9p3ai3cqt4r5r3aaz1.png)
![7l - (2V)/(l^2)=7b - (2V)/(b^2)](https://img.qammunity.org/2022/formulas/mathematics/college/14rhoxmf7euxvqgiklrct56dca0ho5iudh.png)
By comparison:
![l =b](https://img.qammunity.org/2022/formulas/mathematics/college/ghvwmdqdwn9hg1enk3pehc6mic508jvjlj.png)
becomes
![7l = (2V)/(l^2)](https://img.qammunity.org/2022/formulas/mathematics/college/dmsluk5zzpgt5q0vdrhpzez391x6o3s1w2.png)
Cross Multiply
![7l^3 = 2V](https://img.qammunity.org/2022/formulas/mathematics/college/bxnn8ooonyko2nn2c2wlwzpkt4i05i3c02.png)
Solve for l
![l^3 = (2V)/(7)](https://img.qammunity.org/2022/formulas/mathematics/college/p0vmo5m9ldowmp4gua9z1ateg4i81tvuaz.png)
![l = \sqrt[3]{(2V)/(7)}](https://img.qammunity.org/2022/formulas/mathematics/college/vjm8se4hz6tch3p3lyo3f0bwgona9f0w31.png)
Recall that:
![l =b](https://img.qammunity.org/2022/formulas/mathematics/college/ghvwmdqdwn9hg1enk3pehc6mic508jvjlj.png)
![b = \sqrt[3]{(2V)/(7)}](https://img.qammunity.org/2022/formulas/mathematics/college/k0zjpnup3lr3v6o5hhnldwshtyv54ttg07.png)
Also recall that:
![h = (V)/(lb)](https://img.qammunity.org/2022/formulas/mathematics/college/szel9pyfhwxlqrg69n9s330k8b71bfwyc8.png)
![h = \frac{V}{\sqrt[3]{(2V)/(7)}*\sqrt[3]{(2V)/(7)}}](https://img.qammunity.org/2022/formulas/mathematics/college/u7zmtewxs54zt8e87acrc2f5tq6dtx1ld4.png)
![h = \frac{V}{\sqrt[3]{(4V^2)/(49)}}](https://img.qammunity.org/2022/formulas/mathematics/college/un5mdmoccruq9ceka5t7s7uvibvgl8dex8.png)
Apply law of indices
![h = \sqrt[3]{(49V^3)/(4V^2)}](https://img.qammunity.org/2022/formulas/mathematics/college/3d0cr8bw6atr9gz3935cii0zycw8f8nxvo.png)
![h = \sqrt[3]{(49V)/(4)}](https://img.qammunity.org/2022/formulas/mathematics/college/gq4f0nst5x9yeadkallm7q7fqdqsrhcjao.png)
The dimension that minimizes the cost of material of the aquarium is:
![h = \sqrt[3]{(49V)/(4)}](https://img.qammunity.org/2022/formulas/mathematics/college/gq4f0nst5x9yeadkallm7q7fqdqsrhcjao.png)