188k views
1 vote
Solve the following equation by completing the square. 12x^2 - 48x = -39​

User Kudlatiger
by
8.4k points

1 Answer

4 votes

Answer:


\large\boxed{\boxed{x = \begin{cases} ( √(3) )/(2) + 2 \\ - ( √(3) )/(2) + 2 \end{cases}}}

Explanation:

to understand this

you need to know about:

  • quadratic equation
  • PEMDAS

let's solve:


  1. \sf divide \: both \: sides \: by \: 12 : \\ \sf {x}^(2) - 4x = - (13)/(4)

  2. \sf \: add \: { - 2}^(2) \: to \: both \: sides : \\ \sf { {x}^(2) } - 4x + ( - {2}^(2) ) = -(13)/(4) + ( { - 2}^(2) ) \\ {x}^(2) - 4x + 4 = -(13)/(4) + 4

  3. \sf simplify \: addition : \\ \sf { {x}^(2) } - 4x + 4 = (3)/(4)

  4. \sf use \: {a}^(2) - 2ab + {b}^(2) = (a - b {)}^(2) : \\ \sf (x - 2 {)}^(2) = (3)/(4)

  5. \sf squre \: root \: both \: sides : \\ \sf \sqrt{(x - 2 {)}^(2) } = \pm \sqrt{ (3)/(4) } \\ \begin{cases} x - 2 = ( √(3) )/(2) \\x - 2 = - ( √(3) )/(2) \end{cases}

  6. \sf add \: 2 \: to \: both \: sides : \\ \sf \begin{cases}x = ( √(3) )/(2) + 2 \\ x = - ( √(3) )/(2) + 2 \end{cases} \\ \therefore \: x = \begin{cases} ( √(3) )/(2) + 2 \\ - ( √(3) )/(2) + 2 \end{cases}
User Javiyu
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories