45,131 views
2 votes
2 votes
Verify the following identity and show steps

(Cos2 θ)/(1+sin2 θ)= (cot θ-1)/(cot θ+1)

User Shaurya Uppal
by
2.5k points

1 Answer

17 votes
17 votes

Answer:

Verified below

Explanation:

We want to show that (Cos2θ)/(1 + sin2θ) = (cot θ - 1)/(cot θ + 1)

In trigonometric identities;

Cot θ = cos θ/sin θ

Thus;

(cot θ - 1)/(cot θ + 1) gives;

((cos θ/sin θ) - 1)/((cos θ/sin θ) + 1)

Simplifying numerator and denominator gives;

((cos θ - sin θ)/sin θ)/((cos θ + sin θ)/sin θ)

This reduces to;

>> (cos θ - sin θ)/(cos θ + sin θ)

Multiply top and bottom by ((cos θ + sin θ) to get;

>> (cos² θ - sin²θ)/(cos²θ + sin²θ + 2sinθcosθ)

In trigonometric identities, we know that;

cos 2θ = (cos² θ - sin²θ)

cos²θ + sin²θ = 1

sin 2θ = 2sinθcosθ

Thus;

(cos² θ - sin²θ)/(cos²θ + sin²θ + 2sinθcosθ) gives us:

>> cos 2θ/(1 + sin 2θ)

This is equal to the left hand side.

Thus, it is verified.

User James Brooks
by
2.4k points