72.7k views
3 votes
Using the binomial theorem , obtain the expansion of :


(1+3x)^6+(1-3x)^6

2. Using the binomial theorem , expand

(1+2x)^5 , simplifying all the terms.

User Monso
by
4.0k points

1 Answer

4 votes

Answer:

see explanation

Explanation:

Expand both factors and collect like term

Using Pascal' triangle with n = 6 to obtain the coefficients

1 6 15 20 15 6 1

Decreasing powers of 1 from
1^(6) to
1^(0)

Increasing powers of 3x from
(3x)^(0) to
(3x)^(6)


1+3x)^(6)

= 1.
1^(6)
(3x)^(0) + 6.
1^(5)
(3x)^(1) + 15.
1^(4)
(3x)^(2) + 20.
1^(3)
(3x)^(3) + 15.1²
(3x)^(4) + 6.
1^(1)
(3x)^(5) + 1.
1^(0)
(3x)^(6)

= 1 + 18x + 135x² + 540x³ + 1215
x^(4) + 1458
x^(5) + 729
x^(6)

--------------------------------------------------------------------------------------


(1-3x)^(6)

= 1.
1^(6)
(-3x)^(0) + 6.
1^(5)
(-3x)^(1) + 15.
1^(4)
(-3x)^(2) + 20.
1^(3)
(-3x)^(3) + 15.1²
(-3x)^(4) + 6.
1^(1)
(-3x)^(5) + 1.
1^(0)
(-3x)^(6)

= 1 - 18x + 135x² - 540x³ + 1215
x^(4) - 1458
x^(5) + 729
x^(6)

----------------------------------------------------------------------------------

Collecting like terms from both expressions


(1+3x)^(6) +
(1-3x)^(6)

= 2 + 270x² + 2430
x^(4) + 1458
x^(6)

----------------------------------------------------

(2)

Using Pascal's triangle with n = 5

1 5 10 10 5 1

Decreasing powers of 1 from
1^(5) to
1^(0)

Increasing powers of 2x from
(2x)^(0) to
(2x)^(5)


(1+2x)^(5)

= 1.
1^(5)
(2x)^(0) + 5.
1^(4)
(2x)^(1) + 10.
1^(3)
(2x)^(2) + 10.
1^(2)
(2x)^(3) + 5.
1^(1)
(2x)^(4)+ 1.
1^(0)
(2x)^(5)

= 1 + 10x + 40x² + 80x³ + 80
x^(4) + 32
x^(5)

User Mathieu Lomax
by
4.2k points